
Masaryk University
Faculty of Informatics

Analyze and improve image
filters in GNOME Photos

Bachelor’s Thesis

Samuel Zachara

Brno, Spring 2020





Masaryk University
Faculty of Informatics

Analyze and improve image
filters in GNOME Photos

Bachelor’s Thesis

Samuel Zachara

Brno, Spring 2020





This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.





Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Samuel Zachara

Advisor: RNDr. Adam Rambousek, Ph.D.

i





Acknowledgements

I would like to thank Debarshi Ray for guiding me with all parts of the
thesis and for his time helping me with the thesis. I would also like to
thank RNDr. Adam Rambousek, Ph.D. for advising and supervising
my thesis.

iii



Abstract

This thesis is focused on reverse-engineering the Clarendon filter from
popular social network Instagram and implementing it inside the
Gnome’s Photos application. At the beginning of the thesis, a detailed
reconstruction of the filter is made. After that, a search for the most
optimal implementation of the filter follows. The result of the thesis is
the implementation of the filter algorithm inside the Gnome’s Photos
application.

iv



Keywords

Image filter reconstruction, Clarendon filter, GNOME Photos

v





Contents

Context 1

Introduction 3

1 Reverse engineering the Clarendon filter 5
1.1 Introduction to the Clarendon filter . . . . . . . . . . . . . . 5
1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Introduction to experiments . . . . . . . . . . . . 7
1.2.2 Detecting color space . . . . . . . . . . . . . . . . 8
1.2.3 Detecting pixel position dependency . . . . . . . 10
1.2.4 Detecting inter-pixel dependency . . . . . . . . . 13
1.2.5 Detecting inter-channel dependency . . . . . . . 19

2 Development of the filter algorithm 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Algorithm using lookup tables . . . . . . . . . . . . . . . . 25
2.3 Algorithm using equations . . . . . . . . . . . . . . . . . . 26

3 Implementing the algorithm inside Gnome Photos 31
3.1 Introduction to Gnome development . . . . . . . . . . . . . 31
3.2 Implementation of the 4 algorithms . . . . . . . . . . . . . . 31
3.3 Choosing one final algorithm . . . . . . . . . . . . . . . . . 33

4 Testing the visual accuracy of the naked eye 35

5 Conclusion 41
5.1 Conclusion from the thesis . . . . . . . . . . . . . . . . . . 41
5.2 Visual comparison of the Clarendon filter and our reproduc-

tion of the filter . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 49

A An electronic appendix 51
A.1 Python scripts used in the experiments . . . . . . . . . . . . 51
A.2 Source code of the final implementation of the algorithm . . . 51

vii





List of Tables

1.1 Errors counted from images 16
2.1 Root mean square error for different polynomial degrees

of equation for fitting green channel curve 28
2.2 Root mean square error for different polynomial degrees

of equation for fitting blue and red channel surfaces 30
3.1 Accuracy of individual algorithms separated by

channels 33
4.1 Errors for three images used in the questionnaire for each

filter algorithm 38
4.2 Statistics from the questionnaire showing percentage of

answers assuming the two images were the same 38

ix





List of Figures

1.1 On the left side is original image without any processing.
On the right side is the same image after being
transformed with Clarendon filter. 6

1.2 On the left side is original image without any processing.
On the right side is the same image after being
transformed with Clarendon filter. 6

1.3 These are three images, each separating two out of three
RGB channels into color plane 9

1.4 Separation of RGB channels 10
1.5 Images with solid colors used for detecting the image

overlay 12
1.6 These are close ups of three patterns used in the six

images 14
1.7 Three repeating patterns visible across all of the error

images 17
1.8 Three cropped images used for sharpening check. Left

image is an original image in black and white. Middle one
is sharpened image, and the right one is the image after
being applied Clarendon filter and converted to black an
white 18

1.9 Curves generated from three images 20
1.10 Three images, that each separate two RGB channels into

color plane, to display all of the possible combinations
with every two channels 21

1.11 Graphs showing dependency of green channel on red and
blue channels 22

1.12 Graphs showing dependency of red channel on blue and
green channels 23

1.13 Graphs showing dependency of blue channel on red and
green channels 24

2.1 Plot of data points for the equation for a green
channel 27

2.2 Plot of data points for the equation for a blue channel 28
2.3 Plot of data points for the equation for a red channel 29

xi



4.1 Image 1 used in the questionnaire 36
4.2 Image 2 used in the questionnaire 36
4.3 Image 3 used in the questionnaire 37

xii



Context

We live in the age when it is easier than ever to connect with other
people through so-called social networks. Many types of these media
platforms are being developed due to ever-growing interest from
its customers or users. While some social networking sites are used
mainly for texting, sending emoticons, or small compressed images
and videos, others make it possible to share your daily routines to all
of your contacts. These are called stories and they are short videos
available to view for everyone for 24 hours. One of the most famous
networks that offer this type of functionality is called Instagram.

The original purpose and the idea of Instagram is, however, a little
different. During the days when Instagram stories are not available
yet, people are using this app for sharing their nicest photographs
from their holidays and adventures. One of the breakthrough features
of Instagram, however, is the fact you can use many different photo
filters to enhance the look of your photo. These range from black and
white filters, ones that offer washed-out colors to vivid and contrast
heavy filters.

Somewhat similar photo filters can be found in Linux. More specif-
ically inside desktop environment called Gnome. This desktop envi-
ronment’s native photo editing program is simply called Photos. Only
a small set of filters to enhance the look of your image is available,
and most of them are copies of Instagram filters. These copies are
similar to their original counterparts and most of them are created
with some filter color reproduction software. Such software is based
on simple three-dimensional lookup tables which are represented by
two-dimensional hald images. Hald image contains one particular
color pattern. All colors are represented by this pattern. Colors that
are not present in the hald image are calculated by approximation. The
basic problem of this method is, that this procedure can only caption
transformations used in photo filter, where no different techniques
like vignetting, watermarks, scratches or gradients are used [1].

In the thesis, one of the Instagram filters is reverse-engineered as
precisely and scientifically as possible. After this analysis, the best
ways this filter can be implemented inside Gnome photos are explored
and later implemented. For this purpose, Clarendon filter is chosen.

1



This is one of the most used Instagram filters, and subjectively one
of my favorites. It is used mainly with sun-sets and colorful pictures,
since it adds light to light areas (also called highlights) and darkens
dark areas (also called shadows) [2]. This filter also introduces a slight
color shift to colder tones. Another reason for this filter to to be chosen
is the fact that it is a default filter in the Instagram app. For all of the
reasons above, Gnome users are missing out on this filter.

One of the Instagram filters, specifically Hefe filter, is already im-
plemented using similar techniques used in this. This work, done by
Corey Hoard is the main inspiration for this thesis and helps with
understanding all the necessary parts of reverse-engineering the filter
[6]. However, many parts are just briefly described in this work, and a
large part of the process is to be done in this thesis.

The key part of this thesis that follows analysis, is the part where
some of the data generated from experiments are fitted with equations
in numerical computing environment Matlab. This is one of the more
challenging parts of the thesis since data generated from the analysis
part is often complex and can only be represented by 3D graphs. For
this purpose, very helpful seems to be Matlab documentation [12].
Another important source of information is the work Advanced sur-
face fitting techniques. As stated in this article, “In most commercial
packages the user has to specify various fitting parameters and test
the results before accepting the final surface” [3]. This helps us not
only understand the theory of fitting but also guides us to choose the
correct parameters and variables when proceeding with a surface fit.

2



Introduction

At the time of writing this thesis, Instagram is one of the most popular
social networking sites in the world. The majority of people have
at least heard about this social network, and many of them use it
regularly. As the study shows: "more than 95 million photographs are
uploaded to Instagram every single day" [4]. Another research based
on more than 40 million photographs uploaded to Instagram reveals
that: "almost 20 percent of all the images are processed with one of
the Instagram filters" [5]. Since Clarendon filter is the most popular
Instagram filter and is used on almost 25 percent of all filtered images
posted on this network, there is strong motivation to broaden the set
of the filters available inside Gnome Photos.

The intention with this thesis is not only to give people a chance
to use the Clarendon filter outside of Instagram, but also to show the
process of reverse engineering the photo filter to make a starting point
for others to continue with other filters. This second purpose is very
important because this could resolve in a wider selection of filters
inside the Gnome photos application and, therefore, more frequent
use of filters on images imported from mobile phones and cameras.
This could be the simplest way to enhance photographs without using
complicated photo editing software, which sometimes can be time
consuming and exhausting.

The first part of the thesis consists of the reverse engineering and
studying the Clarendon filter. In this part, key discoveries are made
which shape the final implementation of the filter. The second part
of the thesis contains the creation of a mathematical representation
of the filter. The next part is focused on the final implementation
of the filter inside the Photos application. This implementation uses
the C language. At the end of the thesis, the final comparison of the
developed filter with the Clarendon filter is shown. A conclusion is
made if it is possible to distinguish the two filters with a naked eye by
an average human.

3





1 Reverse engineering the Clarendon filter

1.1 Introduction to the Clarendon filter

Before a detailed analysis of the filter, we need to understand the basic
principles of the filter. To research the filter successfully, a first visual
inspection of the filtered image is performed. For this purpose, the
picture is transformed with the Clarendon filter and placed side by
side with the original one to highlight the key techniques and the
features of the filter (Figure 1.1).

After a close analysis with the naked eye, several things stand
out. The first main difference is that colors in the right image seem to
be more vibrant. The green color is more pronounced. Several more
differences are noticeable, such as dark areas getting even darker in
the right image and the light areas appear to be even brighter. This
indicates the manipulation of the highlights and shadows by the filter.
This resolves in amore vibrant image overall and increases the contrast
of the image. The last thing that can be noticed from these two images
is a slight blue color shift. To confirm the analysis from this image, the
same inspection is performed with one more picture.

In another two images (Figure 1.2), there are very similar differ-
ences as in the set of images. In the bottom side of the image, even
stronger blue color shift is visible. This indicates that red-colored pix-
els are transformed to contain a lot more blue color. This effect is most
noticeable in darker parts of the image. All of the other differences are
the same as with the first two pictures.

This filter analysis with the naked eye is an important step to
understand the basic principles of the Clarendon filter. Based on this
knowledge, it is possible to create several experiments to research
the filter in more detail. These experiments work with precise data to
eliminate possible errors caused by inspection with the naked eye.

5



1. Reverse engineering the Clarendon filter

Figure 1.1: On the left side is original image without any processing.
On the right side is the same image after being transformed with
Clarendon filter.

Figure 1.2: On the left side is original image without any processing.
On the right side is the same image after being transformed with
Clarendon filter.

6



1. Reverse engineering the Clarendon filter

1.2 Experiments

1.2.1 Introduction to experiments

This part of the thesis is designed to analyze the filter in more detail
and divide it into smaller operations. Each experiment is designed to
analyze one type of behavior of the filter. Every experiment consists
of three parts. In the first part, called purpose, a general explanation
of the importance of the experiment is given. This part is followed
directly by the implementation of the experiment. All of the experi-
ments are implemented in Python. Python is used for its ease-of-use.
For manipulation with the images, Python’s imaging library PIL is
used. For generating graphs and visualizing data from the experi-
ments, Python’s plotting library Matplotlib is used. The last part of
each experiment is an outcome. In this part, the general conclusion
from the experiment is summed up.

The main purpose of these experiments is to be able to create an
effective and precise algorithm to reproduce the Clarendon filter. This
algorithm is based on a pixel by pixel transformation of the image to
achieve the desired effect. Since many factors can increase the com-
plexity of the algorithm, each experiment plays a role in minimizing
the resources needed to perform this transformation.

There are several possible inputs that can play a role in transform-
ing the input color of a pixel into the output color. One of these is the
position of the pixel in the image. There are two types of operations
that use the position of the pixel for calculating the output value of the
pixel. The first group comprises pixel position-dependent operations,
that create different output values for pixels with the same color in
different positions of the image. The second group is formed by inter-
pixel dependent operations, whose output value for a single pixel
depends on the values of the neighboring pixels. The most important
input, however, is the color of the pixel itself.

This means that currently to a create a correct output for one input
pixel from the image a function with the these inputs is needed: the
position of the pixel, the colors of other pixels in the image, and the
color of the pixel itself. It would be very complex and difficult to create
such a function. In the following experiments, the main goal is to

7



1. Reverse engineering the Clarendon filter

eliminate as many inputs as possible to make the process of creating
this function much simpler.

Each of the experiments uses images for the research. For this
purpose, an image data set is generated with a simple Python script
[Script 1]. This script is based on the script used for generating a
similar image set in the work Reverse engineering Instagram’s Hefe
filter by Corey Hoard [6]. These images are designed to highlight the
specific properties of the image filter. All of these images are processed
with the Clarendon filter,

1.2.2 Detecting color space

Purpose

There are more ways of representing a color in the image. To be able
to display different specters of visible colors various color spaces
are used. Color space, also known as the color model, is an abstract
mathematical model which simply describes the range of colors as
tuples of numbers [7]. Many different color models are currently used
for color representation. One of the most popular is the RGB color
model.

The RGB color model uses three values to represent color. As the
name suggests, the values are red, green, and blue. There are more
standards of RGB color model. For our testing, the sRGB color space
is used. The reason is that sRGB uses three 8 bit values, totaling 24 bit.
It means that with sRGB we can display more than 16 million colors.
This is enough for our purpose of reproducing the filter.

An alternative representation of color to the RGBmodel is the HSV
model. Letter H stands for hue, S for saturation, and V for value. The
main advantage of this color model is the intuitive changing from one
color to another by manipulating the saturation or the hue.

From the visual analysis of the filter, it seems that some kind of
tone mapping is present. This tone mapping has to be reproduced in
the final filter algorithm. The reproduction of the filter can be done
using the separation of the color into individual channels from some
color model. For ease of use and the simple 3 times 8-bit structure, the
sRGB color space is tested first to see the possibility of using it in the
transformation.

8



1. Reverse engineering the Clarendon filter

‘

Figure 1.3: These are three images, each separating two out of three
RGB channels into color plane

Implementation

The transfer function of the Clarendon filter is plotted for individual
RGB channels in the following way. Pixels with values ranging from
0 to 255 for every RGB channel are taken from images in Figure 1.3.
These values are mapped to an x-axis of the graph in Figure 1.4. The
same pixels are taken from filtered pairs of these images and values
of each channel are mapped to the y-axis of the same graph [Script 2].
In this way, the transformation function is visible and can be analyzed.
Please note that this transformation function plot, does not represent
the whole Clarendon filter since there can be many more factors that
shape the function, as described in the introduction to the experiments.
This plot is used only to get the general idea of the way it can look,
which provides useful information for this experiment.

Mappings of individual channels are shaped into a regular curve
with small deviations of the values from the general shape of the
function. This means that creating a function to reproduce a simi-
lar mapping with our custom filter algorithm would be reasonably
easy. Due to this discovery, the RGB color model is chosen for the
reproduction of the filter. For this reason, no other color space needs
to be tested. In all remaining experiments, the RGB color model is
used for testing purposes. Separating color from individual pixels into
sRGB channels seems like the best option since sixteen million colors
is plenty to create a trustworthy reproduction of the filter while being
space and performance efficient.

9



1. Reverse engineering the Clarendon filter

Figure 1.4: Separation of RGB channels

Outcome

It is apparent from this experiment, that the Clarendon filter applies
some type of tone mapping using the RGB color model. This discovery
is very useful for future experiments and analyses of the filter. Now,
the general idea is that tone mapping present in the filter, will be
reproduced using the RGB color model.

1.2.3 Detecting pixel position dependency

Purpose

In some of the filters from the Instagram filter library, pixel position-
dependent operations can be found. One example of such a filter is the
Hefe filter [6]. This means that there is a possibility that the Clarendon
filter uses some type of pixel position-dependent operation, which is
the reason why further analysis needs to be made.

A pixel position-dependent operation is in our case any type of
image overlay. By image overlay, we can understand any operation that
transforms pixels throughout the image differently with or without a
regular pattern. For instance, vignetting can be considered as an image

10



1. Reverse engineering the Clarendon filter

overlay. Vignetting creates a radial darkening in the corners of the
image. As stated on the website of popular film cameras: “vignetting
is an imaging phenomenon that happens with virtually every optical
system” [8]. This phenomenon is so common in lenses with a wide
aperture, that it is often considered a desired effect in the picture. This
is the reason why vignetting is very popular in image processing in
general, and thus used in some of the filters from Instagram.

By image overlay, we can also understand adding some type of arti-
ficial noise, scratches, or objects in front of the image. These techniques
are often used to replicate noise in the picture, mimicking natural noise
from film cameras. Despite often being considered an imperfection,
many filters add noise artificially to replicate the unmistakable look
from a film camera. When adding scratches and imperfections in front
of the image, the vintage look can be achieved even with photographs
taken with a smartphone camera.

The main goal of this experiment is to detect whether the Claren-
don filter uses any type of overlay image over original images. It helps
me to prove or disprove the presence of pixel position-dependent
operations. If some type of image overlay is present when creating
the filter algorithm, this overlay will be reproduced and applied over
the image. If it is proven not to contain an image overlay, this type of
operation can be eliminated from the final algorithm, making it one
layer more simple.

Implementation

To separate one input (pixel position) from the other two inputs (color
of the pixel, color and position of other pixels) simple images contain-
ing only one color are used in this experiment. For this purpose, 5
solid colored images are used. These images are processed with the
Clarendon filter (Figure 1.5). If the image overlay is present in the
filter, filtered images will not look uniform in color and at least in
some of these images, some type of regular or irregular pattern would
be visible.

After visual inspection of all these images transformed with the
Clarendon filter, it seems that images are uniform in color, and with
the naked eye no image overlay can be seen. To eliminate errors caused
by the imperfection of the naked eye, a small Python script [Script 3]

11



1. Reverse engineering the Clarendon filter

Figure 1.5: Images with solid colors used for detecting the image
overlay

12



1. Reverse engineering the Clarendon filter

is used to determine the uniformity of the filtered images. This script
takes each pixel from the image and compares its value to the other
pixels. If all the pixels are the same, True is returned. This script is run
with all 5 images.

Outcome

After running the scriptwith all 5 images, the result is that all the pixels
in each image are the same. This is a clear proof that the Clarendon
filter does not use any type of image overlay. It means that the final
filter algorithm will not include one extra step needed to reproduce
image overlay. This helps with increasing the speed of the algorithm
and decreasing the complexity of the filter.

1.2.4 Detecting inter-pixel dependency

Purpose

When manipulating the image, many types of inter-pixel dependent
operations can be used. For testing purposes, these operations are
divided into two groups.

∙ All operations that use information about neighboring pixels to
make the color of the input pixel more similar to them belong to
the first group of inter-pixel dependent operations. Some of the
operations which belong to this group are blurring or decreasing
clarity.

∙ Another group contains those inter-pixel dependent operations
which use data about other pixels to make the color of the input
pixel more different from its neighbors. This group comprises
operations like sharpening and clarity increasing.

Since all of these inter-pixel dependent operations need extra in-
puts for transforming each pixel, they greatly increase the complexity
of the filter. If the result seems to be, that some of these operations are
present, they need to be replicated in the final algorithm. Implemen-
tation of such operations, however, is not a simple task, and the best
approach would be to use some well-known algorithms. For example,

13



1. Reverse engineering the Clarendon filter

Figure 1.6: These are close ups of three patterns used in the six images

there are well known and widely used algorithms for blurring and
other operations, as well. However, if the filter turns out to be inter-
pixel independent, it would mean that the only remaining factor that
affects the output value of a single pixel would be the color value of
the pixel itself.

Implementation of detecting the first group of operations

In this part of the experiment, six images that consist of black and
white pixels ordered in different patterns are used for the research. The
main reason for this is that if some type of blur or similar operation
is present, its effect can be seen best in images with strong contrast
patterns. Three pairs of different patterns are present in these six
images (Figure 1.6).

∙ Horizontal lines pattern.

∙ Vertical lines pattern.

∙ Alternating pattern.

From these six images, there are three pairs of complementary
images which use the same pattern with swapped black and white
colors. The main idea is to separate black and white pixels from these
six images and compare them to the pixels with the same position from
images with solid black and solid white color. From the six images,
there are three pairs of complementary images, which use the same
pattern with swapped black and white colors. This makes possible

14



1. Reverse engineering the Clarendon filter

combining black pixels from one image with black pixels from the
second image and create a new image consisting of only black pixels.
The same is done for white pixels for all three pairs. In this way, six
new images are generated. Three of them consist of black pixels and
the other three of white pixels.[Script 4]

However, since all of these images are processed with the Claren-
don filter, not all of the black or white pixels are equal. Now, each of
the six images are compared with solid black and solid white images,
which were also filtered with the Clarendon filter. In theory, if no
blur or similar inter-pixel operation is present in the Clarendon filter,
images should be the same. However, that is not the case this time. For
this reason, the difference between the pixels in the compared images
separated by RGB channels is counted [Script 5].

def count_error(pixel1, pixel2):
(r1, g1, b1) = pixel1
(r2, g2, b2) = pixel2
error_red = ((abs(r1 - r2)/255) * 100)
error_green = ((abs(g1 - g2)/255) * 100)
error_blue = ((abs(b1 - b2)/255) * 100)
return error_red, error_green, error_blue

In the code above, one function can be seen. This is the function
used for comparing two pixels from two images. It takes two pixels
as input parameters. At first, individual RGB color channels are ex-
tracted from the pixels and named accordingly. Then an error for each
color channel is counted. This error is represented with a percentage.
Specifically, the percentage of the difference between the RGB val-
ues of pixel1 compared to pixel2. 100 percent change would be value
changing from 0 to 255. All of the errors are returned and used for
future purposes.

Using this function, the average and maximum errors are counted
for six images. Errors are counted for each RGB color channel sepa-
rately. The average error is an arithmetic mean of all the errors. The
maximum error is the maximum difference found in two correspond-
ing pixels.

As results show (Table 1.1), the average error for black and white
images circulates around 1 percent. This number is very insignificant

15



1. Reverse engineering the Clarendon filter

Table 1.1: Errors counted from images

Image Channel Combined black pixels Combined white pixels
Average Maximum Average Maximum

Red 0.7843 1.1765 1.1765 1.5686
Vertical stripes Green 0.7843 1.1765 1.5686 1.9608

Blue 1.1765 1.5686 0.3922 0.7843
Red 0.7843 1.1765 1.1765 1.1765

Horizontal stripes Green 0.7843 1.1765 1.5686 1.5686
Blue 1.1765 1.5686 0.3922 0.3922
Red 1.1520 1.9608 1.7157 3.1373

Alternating pixels Green 0.9804 3.1373 1.2255 3.9216
Blue 1.0294 3.5294 0.5147 2.7451

at first sight. However, maximum errors in some cases reach 2 to 3
percent. This may indicate that some type of blurring kernel could be
present. To understand these irregularities, a visual representation of
the errors is needed.

For this purpose, the error is represented by a color. Since the
errors range from zero to around three percent, it is represented in the
following way. The zero percent error is represented by a blue color
and three percent error, or more, by a red color. The error in between
these two numbers is represented by the appropriate blend of these
two colors. This creates a spectrum of colors, that can be differentiated
with the naked eye. [Script 6]

For each of the six images compared previously, four error images
are generated, totaling 24 images [Script 6]. Now, these images are
analyzed. To see a three regularly repeating patterns in error images,
three images are chosen. Since patterns are very dense and hard to
see without a close look, images are scaled and cropped.

All of the error images show one of these three regular error pat-
terns (Figure 1.7). All of these patterns are very similar to the patterns
from the original images. The main difference is, that now the pattern
is regularly repeating every 8 pixels. In the first of the three images,
we can see a regular 8 by 8-pixel pattern. This does not look like a
result of some blurring kernel. Another factor, that can create these

16



1. Reverse engineering the Clarendon filter

Figure 1.7: Three repeating patterns visible across all of the error
images

patterns is a JPEG compression algorithm, used by Instagram after
the filter is applied.

JPEG compression is a very common compression method used on
the images. Since it is a lossy compression, some of the data from the
image are lost. This compression algorithm consists of 5 main stages
[9].

∙ RGB color space to YCbCr color space conversion

∙ Pre processing for DCT transformation

∙ DCT Transformation

∙ Co-efficient Quantization

∙ Lossless Encoding

Out of these five stages of the JPEG compression algorithm, pre-
processing for DCT transformation, where DCT stands for a discrete
cosine transformation, is the most significant to my error images. In
this step of an algorithm, the image is divided into 8 by 8 pixel mac-
roblocks. After this stage during the discrete cosine transformation
similar artifacts as seen in the error images can be introduced.

The other argument, that the regular pattern is a result of JPEG
compression, is that an error around one to two percent between two
images is not noticeable with the naked eye. It means that it would not
make sense to use the blurring kernel in the filter which is invisible to
the naked eye.

17



1. Reverse engineering the Clarendon filter

Figure 1.8: Three cropped images used for sharpening check. Left
image is an original image in black andwhite.Middle one is sharpened
image, and the right one is the image after being applied Clarendon
filter and converted to black an white

Implementation of detecting the second group of operations

For detecting this group of operations, one of the previously generated
error images is used. First, this image is converted into monochrome
colors. This new monochrome image is processed in two ways. One
image is sharpenedwith Gnome Photos software. Since Gnome Photos
does not have an exact representation of sharpening, the slider is
used for this purpose. The slider is set to about 25 percent. This is
equivalent of sharpening, that can be done on regular photograph
without introducing many side effects, like grain and noise. Then the
image is saved. The second one is processed with the Clarendon filter
and converted into monochrome. Now, these three images are visually
compared (Figure 1.8).

When analyzing the three images (Figure 1.8), transitions between
horizontal lines are most important to this experiment. The original
image has very soft and subtle transitions when compared to the
sharpened image. In the sharpened image, individual lines are more
distinguishable. The difference between these two images is used as
an example of how sharpening affects our image filtered with the
Clarendon filter. When looking at this image, transitions between the
lines seem very similar to the original image. This indicates that no
sharpening was used on this image.

After visual analysis of the images, the assumption is made that the
filter does not use sharpening. To prove it, transitions between lines

18



1. Reverse engineering the Clarendon filter

in the previous three images are visualized. Since all three images are
monochrome, the vlues of individual RGB channels for each pixel are
the same. Visual representation is done by a graph, where the original
value of one of the RGB channels is mapped onto the y-axis and the
filtered value of the same channel is mapped onto the x-axis.

In the graph (Figure 1.9), three 16 pixel long horizontal lines of
pixels from three images are visualized. Multiple graphs are created
with different pixel positions in the images to ensure uniformity across
the whole image. Graphs from different parts of the images all share
the same results. The curve for the sharpened image is different from
the other two. On the other hand, curves for the original image and
the image processed with the Clarendon filter are very similar. The
only difference between them is a slight shift on the y-axis. This is the
result of the color manipulation of the Clarendon filter. Since both of
these curves are very similar, we can say that the Clarendon filter does
not use any sharpening algorithm.

Outcome

After completing both parts of the experiment, a conclusion can be
made. In the first part of the experiment, the fact that the Clarendon
filter does not use any type of blurring filter, nor any similar operation,
was proven. In the second part, the non-presence of other inter-pixel
dependent operations like sharpening inside the Clarendon filter is
proven. After all of this testing, it can be said that the Clarendon filter
does not use any type of inter-pixel dependent operations. This means
that one more factor that could affect the output value of the final
algorithm is eliminated. Since inter-pixel operations are last operations
to require an input of other pixels, our algorithm for transforming
input pixels into output pixels does not need any extra inputs other
than RGB channel values of the one input pixels itself.

1.2.5 Detecting inter-channel dependency

Purpose

In the first experiment, the use of the RGB color model for the filter
reproduction was proven to be a good option. After discoveries made
in other experiments, it was proven that creating a tone mapping

19



1. Reverse engineering the Clarendon filter

Figure 1.9: Curves generated from three images

20



1. Reverse engineering the Clarendon filter

Figure 1.10: Three images, that each separate two RGB channels into
color plane, to display all of the possible combinations with every two
channels

is enough to reproduce the filter. The main question now remains
what type of tone mapping can be applied to the image to mimic the
Clarendon filter.

Since we are working with the sRGB color space, there are more
than 16 million colors the image pixels can have. It would be almost
impossible to create an algorithm with this many possible values that
is effective and accurate enough for our purpose. One way how to
simplify the algorithm is to prove that individual color channels are
independent of each other. Even eliminating the dependency of one
channel on another channel can help to create a better environment
for creating an efficient filter algorithm.

For this purpose, images each separating two out of three RGB
channels (Figure 1.10) can be used to unveil the relationship between
the channels. From these images, it is possible to see what effect other
channels have on each of the RGB channels.

Implementation

From the three images (Figure 1.10), it is possible to compare the
input and output values of each channel for every possible value
of the other two channels. In this way, dependency graphs can be
created which visualize tone mapping functions for each channel with
changing values of the other two channels. In a way similar to the first
experiment, values of channels from original images are mapped onto

21



1. Reverse engineering the Clarendon filter

Figure 1.11: Graphs showing dependency of green channel on red and
blue channels

the x-axis of the graphs and values of channels from filtered images
onto the y-axis. Following these steps, six channel-dependency graphs
are created (Figure 1.11, 1.12, 1.13) [Script 7].

From looking at the graphs showing the green channel dependency
(Figure 1.11), the green channel seems to be independent on blue
and red channels. Even though curves for different values of red
and blue channels are not matching perfectly, this is the result of
imperfections caused by compression used by Instagram. Since the
differences between all of the curves are very small, it can be said
that a green channel is only dependent on itself and no other channel.
This means that the transformation equation for a green channel only
needs an input of a green channel.

From the graphs showing the dependency of a red channel (Figure
1.12), it seems that a red channel is not dependent on a blue channel.
On the other hand, the graph that shows the dependency of a red
channel on a green channel has a wide range of different curves. This
indicates that a red channel is dependent on a green channel. It means
that for transforming an input value of a red channel to an output
value, the equation needs to have inputs of red and green channels.

The last two graphs (Figure 1.13) show the dependency of a blue
channel on green and red channels. It is apparent that a blue channel
depends on a green channel. Another graph seems to indicate that
a blue channel is independent on a red channel, excluding the very

22



1. Reverse engineering the Clarendon filter

Figure 1.12: Graphs showing dependency of red channel on blue and
green channels

bottom left (around first 40 values). However, variations in the curves
are not significant and for this reason, a blue channel can be consid-
ered independent on a red channel. If the final filter turns out to be
inaccurate because of these variations, it will have to be considered
and reproduced with the algorithm.

Outcome

From this experiment, a few conclusions can be made. Not all indi-
vidual RGB channels are independent of each other. Following de-
pendencies were detected: a blue channel on a green channel and
a red channel on a green channel. Other than these two dependen-
cies, channels are only dependent on themselves. This is the final step
in reverse-engineering the Clarendon filter. Now, we can proceed to
develop the filter algorithm itself.

23



1. Reverse engineering the Clarendon filter

Figure 1.13: Graphs showing dependency of blue channel on red and
green channels

24



2 Development of the filter algorithm

2.1 Introduction

From the previous experiments, we have enough data to create a rea-
sonable algorithm that reproduces the Clarendon filter. Our algorithm
takes one pixel from the image as an input. After that, the color of
the pixel is separated into individual RGB channels. Each of these
channels is filtered separately.

Now, the transformation of each input channel into an one out-
put needs to be created. There are more ways of approaching this
task. To make the usage of the filter convenient and fast, an individ-
ual approach is chosen for each channel. There are two methods of
implementation, that are good candidates for the reproduction of the
filter.

∙ Lookup tables

∙ Equation created by either polynomial or different fit

2.2 Algorithm using lookup tables

Using lookup tables is a technique very often used for color processing.
This technique works in a way, that for each possible input value, the
output value is pre-computed inside a data structure. This can resolve
in unwieldy and very resource-heavy structures. In our case, let’s take
a blue channel for example. From the last experiment, it was proven
to be dependent on a green channel and itself. This means that since
we are working in sRGB color space, more than 65000 values need to
be stored. There are a couple of techniques to decrease this number,
such as pre-computing only certain values and using interpolation to
compute values in between them.

Lookup tables are excellent for optimizing the evaluation of func-
tions that are expensive to compute and inexpensive to cache [10].
This is unfortunately not our case with blue and red channels, since
they require more than 65000 values inside the lookup table, if not
using interpolation between the values. However, on the other hand,

25



2. Development of the filter algorithm

a green channel is only dependent on itself. This means that a simple
lookup table with 256 values can be created. Thus, for red and blue
channels lookup table is only a backup option, but for a green channel,
it can be considered as one of the efficient ways of implementation.

To create this lookup table for a green channel, images used in
detecting inter-channel dependency experiment are used (Figure 1.10).
The goal is to create an array of 256 values. For every n-th position of
this array, the output value for input with value n is saved. Data for
this table are taken from two out of three images (Figure 1.10) since
the third one does not contain pixels with values of a green channel
other than zero. To eliminate possible inaccuracy, the output for each
input value is calculated as the arithmetic mean on all filtered pixels
from these two images with the same original value as our input. In
practice, this means that for each pixel in both images with original
green channel value, being for example 4, the output value is calculated
as the arithmetic mean of the same pixels from the Clarendon filtered
pairs of the images. The lookup table for a green channel is saved for
future testing.

2.3 Algorithm using equations

The main advantage of using equations to transfer the input value
into the output value is, that equations are not cache-heavy and if
created correctly, they can also be fast and precise. Using the equations
makes the most sense with red and blue channels since having output
values of these channels is resource-heavy. From our three images
(Figure 1.10), we have enough data to create lookup tables with every
possible combination of any two channels. In this case, we are trying
to represent this data not with the lookup table, but with the equation.
This means, that to create the equation, we need to create a fit for our
data.

Fitting curves and surfaces is a complex process. For this reason,
the Matlab software is chosen to perform these fits.

Matlab is a programming platform designed specifically for engi-
neers and scientists [11]. Inside this software, curve fitting toolbox
can be found. This toolbox can create various types of fits on 2D or
3D data. To create our equations polynomial fitting is used. When

26



2. Development of the filter algorithm

Figure 2.1: Plot of data points for the equation for a green channel

creating polynomial fits with the curve fitting toolbox, the polynomial
degree of the equation can be adjusted with real-time results. Using
this tool, different fits for each channel can be created and later tested
for error and speed when compared to the original Clarendon filter.

Creating fit for the green channel is very simple to create as com-
pared with blue and red channels. First, data from the previously
created lookup table are imported to Matlab as two arrays. One ar-
ray contains original values (values from 0 to 255) and another array
contains values after Clarendon is applied. In the curve fitting tool,
the first array of values is assigned to the x-axis of the graph and the
second array is assigned to the y-axis. This results in a plot (Figure
2.1).

After selecting the type of fit to polynomial, several degrees of the
equation are chosen to produce different fits. The residual plot of each
fit is analyzed. The root mean squared errors are inspected. For several
reasonable polynomials, these errors can be seem in table 2.1.

As we can see, the average residual value is greatly decreasing
with polynomial fits with degrees from one to four. After that, the
accuracy of polynomial fits is increasing slower. This means that since
the fourth-degree polynomial fit has an arithmetic mean of residu-

27



2. Development of the filter algorithm

Table 2.1: Root mean square error for different polynomial degrees of
equation for fitting green channel curve

Degree 1 2 3 4 5 6 7 8
RMSE 14.2074 8.9676 5.5105 3.1180 2.6435 1.5472 1.1298 1.1313

Figure 2.2: Plot of data points for the equation for a blue channel

als only about 3 (which is about one percent), it should be accurate
enough to reproduce the green channel correctly.

Creating polynomial fits for blue and red channels is a little bit
different from the green channel. In this case, the 3D surface needs
to be fitted, since the output value of these channels is dependent
on two values. The approach, is however, very similar. First, all of
the possible values for each channel are imported to Matlab. Then,
in a curve fitting tool for both red and blue channel fit, the z-axis is
assigned desired output values. The original values of blue and red
channels are assigned to the x-axis. Since both of them are dependent
on the green channel, it is assigned to the y-axis. In this way, two 3D
graphs are created (Figure 2.2, 2.3).

After experimenting with degrees of x and y variables, the follow-
ing root mean square errors were found (table 2.2). For both blue

28



2. Development of the filter algorithm

Figure 2.3: Plot of data points for the equation for a red channel

and red channels, the chosen degree of y is one. When increasing the
degree of y, no significant improvements in accuracy are visible. It
is very helpful to have degree of y set to 1, since increasing it would
greatly increase the number of coefficients in total. A reasonable pro-
portion of accuracy to complexity seems to have polynomial fits with
the third and fourth degree of x variable for both red and blue chan-
nels. Equations from these four fits are saved and are used in future
testing.

29



2. Development of the filter algorithm

Table 2.2: Root mean square error for different polynomial degrees of
equation for fitting blue and red channel surfaces

Degree of x Degree of y RMSE blue channel fit RMSE red channel fit
1 1 17.9725 16.7423
1 2 17.7851 16.7294
2 1 10.4671 15.4491
2 2 10.4272 15.4355
3 1 5.7903 6.2367
3 2 5.628 6.1684
4 1 5.0810 4.5350
4 2 4.8832 4.4392
5 1 4.1453 3.9950
5 2 3.8999 3.8857

30



3 Implementing the algorithm inside Gnome
Photos

3.1 Introduction to Gnome development

Gnome photos is an open-source photo management application for
Linux. It can be used for many different purposes. It can be a beautiful
photo viewing application with an intuitive user interface. Users can
also choose to edit their photographs with a few built-in controls. Un-
der the enhancement tab, some color filters can be found.Most of these
are created with lookup tables, reproducing filters from Instagram.
One of the filters is the Caap filter. This filter is a reproduction of the
Hefe filter from Instagram. This work was done by Corey Hoard [6]
who has already been mentioned a few times in my thesis. Currently,
there are 6 filters to choose from. The goal is to add our version of the
Clarendon filter to these filters.

All of these filters are implemented using the gegl C library. To
ensure uniformity, the Clarendon filter is reproduced using the same
library. The main principle of gegl are operations. Operations can be
understood as a single action performed on the image. Some of the
built-in operations of gegl are operations like load, save, saturation,
contrast, etc. The goal is, to create a "Clarendon" operation, which
applies our filter algorithm on each pixel of the image.

For the development of the application, a Gnome builder is used.
This is a special environment for building gnome applications. It sup-
ports functionality like cloning a project from the git repository and
creating and customizing files inside the repository. With this tool, it
is easy to build the project with one click of a button. The application
can be also easily exported as an image.

3.2 Implementation of the 4 algorithms

After cloning the gnome-photos repository [13] inside the Gnome
builder, one new header file and one c file are created. These will
contain the functionality of the new filter. The files are named photos-
operation-insta-clarendon, following the naming scheme. Inside the c

31



3. Implementing the algorithm inside Gnome Photos

file, necessary objects and functions for the working gegl operation
are created. The final filter algorithm will be implemented inside the
function with the suffix "process".

Other files inside the same directory are modified to be able to
work with a new operation. Build files are changed. The front end of
the application is slightly improved, to be able to display a new filter.
For now, after clicking on a new filter option, no action is done, since
the filter is not implemented yet. Since the name of the filter should be
renamed compared to the original name of the filter in the Instagram
application, the name Trencin is chosen to represent this filter. Trencin
is the name of a beautiful town in Slovakia with a picturesque scenery
with a big castle and a historical old town center. Using the filter works
great with this scenery.

The algorithm is implemented in four ways.

1. Green channel transformed with a lookup table, red and blue
channels with the first type of equation

2. Green channel transformed with a lookup table, red and blue
channels with the second type of equation

3. All channels transformed with equations, red and blue channels
with the first type of equation

4. All channels transformed with equations, red and blue channels
with the second type of equation

Lookup table for transforming green channel is saved to array
inside the code. This lookup table was created inside filter algorithm
chapter. Equations for red, green and blue channels following.

fg(g) = 6.87− (0.1453)g+(0.02435)g2 − (1.355e− 4)g3 +(2.267e− 7)g4

(3.1)

fr(r, g) = 18.37 − (1.05)r − (0.0276)g + (0.03275)r2 − (0.001056)rg−
(0.000152)r3 + (2.006e − 6)r2g + (2.091e − 7)r4 + (9.682e − 9)r3g

(3.2)

32



3. Implementing the algorithm inside Gnome Photos

Table 3.1: Accuracy of individual algorithms separated by channels

Implementation Red channel Green channel Blue channel Combined
Algorithm 1 2.7696 1.8605 2.2544 2.2948
Algorithm 2 1.9795 1.8610 2.0963 1.9789
Algorithm 3 2.7094 1.9799 2.2654 2.3182
Algorithm 4 1.9773 1.9690 2.0933 2.0132

fb(b, g) = 13.3 − (0.4149)b − (0.08369)g + (0.01699)b2 − (0.001413)bg−
(9.235e − 5)b3 + (1.239e − 5)b2g + (1.334e − 7)b4 + (2.221e − 8)b3g

(3.3)

The filter is implemented in these four ways. For each implementa-
tion, the same ten images are processed with the filter. 40 new filtered
images are created after the testing. The testing analyzed two things.

First, an important cognition is that applying the filter on 24-
megapixel images is very fast. There is no noticeable difference be-
tween equations with lower or higher polynomial degree. Also, the
time difference between the lookup table and the equation is not notice-
able. This means that time does not have to be taken into consideration
with these implementations.

For testing the accuracy of each algorithm, all of the images are
compared with the same images processed with the Clarendon filter
inside Instagram. The results are displayed in the table (Table 3.1).

For creating the table (Table 3.1) same Python script for counting
the error as in experiments was used [Script 5]. For each of the 10
images for every implementation mean error for each RGB channel is
counted. Only mean errors are shown due to fact, that results were
very consistent for all images.

3.3 Choosing one final algorithm

As we can see (Table 3.1), using a higher degree of equations helps
improve the average accuracy of the algorithm by about one percent.
This means that higher degree polynomial equations will be used in

33



3. Implementing the algorithm inside Gnome Photos

the final algorithm to make it as accurate as possible since no speed
penalty is introduced. The difference between using the lookup table
and the equation for transforming the green channel is very small. Us-
ing the equation is theoretically more resource-heavy on the processor.
However, on the other hand, using the lookup table with static integer
values inside array means that this information about the green curve
is kept inside the cache memory. Since no real performance differ-
ence was apparent and in order to make the code look more uniform
and simple, the green channel is chosen to be implemented using the
equation.

This means that the final algorithm uses three separate equa-
tions for three RGB channels [Implementation]. The accuracy error as
shown in the table (Table 3.1) is around two percent. When analyzing
images filtered with Clarendon versus our filter, no difference can be
spotted. However, to prove that the 2 percent difference is not visible
to the naked eye, a small questionnaire is created.

34



4 Testing the visual accuracy of the naked eye

Our reproduction of the Clarendon filter seems quite accurate. How-
ever, the prove that the new filter is indistinguishable from the original
Clarendon filter with the naked eye can be made. For this purpose, a
questionnaire to research the capabilities of the naked eye is created.

Three images (Figure 4.1, 4.2, 4.3) are filtered with the Clarendon
filter and our new filter. These are placed side by side in the survey.
The respondents are expected to answer a simple question if the two
images seem identical to them or not. To get the idea of the accuracy
of the naked eye, the same three images are processed with two other
algorithms.

These two algorithms are using equations fitted to the same data
as our filter algorithm. The only difference is, that two new algorithms
contain equations with different polynomial degrees. The first one
is created using an equation with a first polynomial degree for all
variables for all channels. Three equations are the following.

fg(g) = 0.3595 + (1.142)g (4.1)

fr(r, g) = −9.369 + (1.181)r − (0.07837 f )g (4.2)

fb(b, g) = 15.49 + (1.168)b − (0.0873)g (4.3)

The other new algorithm is created using equations with these
polynomial degrees. For the green channel, a second degree is chosen.
For equation transforming a red channel, third degree of red vari-
able, and the first degree of green variable is used. The blue equation
uses the second and first degrees of blue and green variables. Three
equations are the following.

fg(g) = −23.93 + (1.715)g − (0.00225)g2 (4.4)

fr(r, g) = 5.028 − (0.01739)r − (0.01967)g + (0.01482)r2−
(0.001433)rg − (4.411e − 5)r3 + (5.709e − 6)r2g

(4.5)

35



4. Testing the visual accuracy of the naked eye

Figure 4.1: Image 1 used in the questionnaire

Figure 4.2: Image 2 used in the questionnaire

36



4. Testing the visual accuracy of the naked eye

Figure 4.3: Image 3 used in the questionnaire

fb(b, g) = −9.131 + (1.863 f )b − (0.1438 f )g−
(0.00295)b2 + (0.0004439)bg

(4.6)

Six images generated by filtering the original images with these
two algorithms are also placed side by side with the images filtered
with the Clarendon filter. In total, we have 9 questions then. Three
more questions are added, each with two same images to see if the
respondents can correctly detect these as the same images. For each
filtered image from the questionnaire, the error percentage is counted
in comparison with the Clarendon filter. These errors are put to the
table (Table 4.1). As we can see, Three filter algorithms have slightly
different average errors when compared with the Clarendon filter.
These differences in errors are used to determine the capabilities of
the naked eye.

In addition to deciding, if every two pairs of images are the same,
the respondents are asked to explain what are the differences between
the two images, if the images seem different to them. This can give us
an idea, of what are the weak parts of our final algorithm. Each ques-
tionnaire was done with supervision. For each question, 15 seconds to
analyze the images is given. After this time, enough time is given for

37



4. Testing the visual accuracy of the naked eye

Table 4.1: Errors for three images used in the questionnaire for each
filter algorithm

Implementation Image 1 Image 2 Image 3
Our final algorithm 2.02 1.18 1.75

Algorithm 1 3.55 3.15 3.73
Algorithm 2 3.07 2.25 2.26

Table 4.2: Statistics from the questionnaire showing percentage of
answers assuming the two images were the same

Image 1 Image 2 Image 3 Total
Our reproduction 93.3% 80% 73.3% 82.2%

Algorithm 1 6.6% 0% 0% 2.2%
Algorithm 2 80% 33.3% 33.3% 48.8%

Two same images 80% 86.6% 93.3% 86.6%

writing the answer. A total of fifteen respondents participated in this
survey. Results separated by the individual images and by different
algorithms are shown in table(Table 4.2).

From the table (Table 4.2) a number of interesting observations
can be made. Algorithm 1, which showed about 3.5 percent error on
average compared to the Clarendon filter, produced images, that were
clearly identified as different from the Clarendon filter. Only about
2.2 percent of images were identified as the same. This means that if
enough time is given to study the images, the naked eye can easily
spot the 3.5 percent difference.

Another interesting observation is, that only about 86.6 percent
of the exact same images were correctly identified as the same. This
can be a result of the fact, that the respondents were specifically told,
that they should look for the smallest details in the images and the
brain forced them into thinking, that they see differences between the
images that were not present.

When we look at Image 1 statistics, the first thing that is noticed
is the fact, that a larger percentage of respondents identified two
images as the same when comparing the Clarendon filter with our

38



4. Testing the visual accuracy of the naked eye

final implementation of the filter than when comparing two exactly
the same images. This is a clear sign, that Image 1 filtered with the
Clarendon filter, and our reproduction of this filter is so similar, that
it is beyond the point the difference can be identified with the naked
eye.

When looking at Image 2 statistics, the difference between the per-
ceived identity of two images between our reproduction of the Claren-
don filter and the two same images is only 6 percent. This means the
difference between our algorithm and the Clarendon filter can be also
marked as indistinguishable with the naked eye.

On the other hand, statistics for Image 3 are a little different. With a
20 percent difference between the Clarendon filter and our filter, more
analysis is made to see why this particular image filtered with our
filter seems a little different than with the Clarendon filter.

From analyzing the reasons given by the respondents of why they
think Image 3 filtered with our filter compared to the Clarendon filter
was different, one answer is mentioned in almost all of them. About
a third of the image consists of a very light and structured sky with
detailed transitions between blue and grey colors (Figure 4.2). When
looking at the images closely, a small difference can be seen between
the way Clarendon filter and our filter processed the image. However,
the difference is so small, that if images are not placed side by side but
viewed one after each other, there is no chance a person would be able
to tell the difference. For this reason, a conclusion is made. Our final
filter algorithm is very accurate and in most cases, no difference can
be seen with the naked eye when compared to the Clarendon filter.
The only small weakness of our reproduction of the Clarendon filter is
present when the filter is used on very bright but structured images.

39





5 Conclusion

5.1 Conclusion from the thesis

To sum up the thesis, there are a couple of important observations to
be made. The main goal of this thesis, which was to create a repro-
duction of the Clarendon filter inside Gnome Photos application was
successfully fulfilled. Furthermore, the approach was documented in
detail, to be a helpful guide for any future similar reproductions. It
can serve as a tool for not only similar reproductions of filters inside
the Photos application but also any reverse engineering of any image
filter in general. Various approaches were discussed in many different
parts of the research. This work improves some of the techniques used
in the work Reverse Engineering Instagram’s “Hefe” Filter [6].

At the beginning of the thesis, the introduction to the Clarendon
filter is made, to familiarize readers that are not using Instagram
with the filter characteristics. After that follows the chapter with all
experiments used for reverse-engineering the filter. First, the general
idea of experiments is described in the introduction to experiments.
Image test set generation is mentioned and the image set is available in
the electronic appendix [Script 1], to show the reader exact data used
for the experiments. Since this set was generated with very similar
code as in Corey Hoard’s work, it can be improved in the future to
contain images that can resolve in even more in-depth reconstruction
of a similar filter.

During all of the experiments, the main source of ideas and infor-
mation was Corey Hoard’s work [6]. However, there are key differ-
ences in this thesis compared to his work. The first experiment, which
consists of the search for the best color model for the filter reproduc-
tion, resulted in a very similar way, with the RGB color model being
the ideal candidate for this purpose. In future research of other filters,
other color models could be analyzed and their performance tested. In
this thesis, the results that the RGB color model offeredwere satisfying
for our purpose.

When searching for pixel position-dependent operations in the
second experiment, the presence of any type of image overlay was
disproved. This was not the case with the Hefe filter, so if another filter

41



5. Conclusion

is researched and it turns out to contain image overlay, the best option
is to follow steps in Corey Hoard’s work. [6]

The third experiment was designed for detecting inter-pixel depen-
dent operations. During this experiment, the presence of these types of
operations was also disproved. This experiment was improved in com-
parison to a similar experiment from Hefe reconstruction. Techniques
used during the reconstruction of the Hefe filter were not designed to
detect operations like sharpening. In this thesis, the second part of the
experiment was added to detect the sharpening and to eliminate pos-
sible inaccuracy of the final algorithm. If some other filter is research
in this way and turns out to contain blurring kernels or sharpening, it
has to be reproduced in the final algorithm.

The last experiment was designed to detect a dependency between
the individual RGB channels. This experiment is the main differentiat-
ing factor for the following implementation in comparison to a Corey
Hoard’s work. Contrary to the Hefe filter, the Clarendon filter does not
have all of the RGB channels independent on each other. Dependencies
of a blue channel on a green channel and a red channel on a green
channel were detected. This shaped the following implementation.
For future research of another filter, results from this experiment can
be very helpful. Since none of the channels were dependent on all
other channels in our case, this option is yet to be researched in the
future with other filters.

During the development of the filter itself, multiple approaches
are chosen. All of the decision making to create the algorithms are
documented. From all of the possible implementations, best 4 are
chosen. Red and blue channels are transformed using polynomial
equations with different polynomial degrees, to find the best possible
solution. Green channel is implemented using both lookup table and
equation. All of the equations were created using software Matlab.

After creating these 4 algorithms, each algorithm is implemented
into the Gnome Photos application. Used libraries and technologies
are documented. This part can help future implementations of other
filters since all necessary changes in the application framework are
mentioned. Ten images are processed using Instagram’s Clarendon
filter and also using our 4 created algorithms. For each set of filtered
images, average error compared to Clarendon filter separated by indi-

42



5. Conclusion

vidual RGB channels is counted. After generating this data one of the
four approaches is chosen as the final algorithm.

The final implementation is done by three equations. This approach
turned out to be the best way for the filter to be reproduced. This part
can serve as a strong motivation for future implementations of other
filters inside the Gnome Photos application.

In the last chapter, the accuracy of the naked eye is tested. After
researching a group of 15 people, a conclusion was made, that our
reproduction of the Clarendon filter is so similar to the original Claren-
don filter, that it is almost indistinguishable with the naked eye. This
conclusion could be made since about 82 percent of images processed
with our reproduction of the Clarendon filter were considered the
same to the images filtered with the Clarendon filter. At the same time,
only about 86 percent of the same images placed side by side were
correctly identified as the same. For this reason, our reproduction of
the filter can be considered very accurate.

5.2 Visual comparison of the Clarendon filter and our
reproduction of the filter

In this section, 15 images filtered with both Clarendon, and our filter
can be seen placed side by side. On the left original Clarendon filter is
placed and on the right is the final reproduction of the filter.

43



5. Conclusion

44



5. Conclusion

45



5. Conclusion

46



5. Conclusion

47





Bibliography

1. Color-filter-reconstruction. Karpinsky Alexander, 2018. Available
also from: https://github.com/homm/color-filters-reconstruction.

2. Your Instagram filter cheat sheet [online]. Lucille Zimmerman, 2019
[visited on 2020-01-05]. Available from: http://lucillezimmerman.
com/2017/01/07/instagramfilter/.

3. Advanced surface fitting techniques [online]. V. Weiss, L. Andor,
G. Renner, T. Várady, 2002 [visited on 2020-01-05]. Available
from: http://www.sciencedirect.com/science/article/pii/
S0167839601000863.

4. Instagram marketing statistics for social media marketing gurus [on-
line]. 99 firms, 2019 [visited on 2020-01-10]. Available from:
https://99firms.com/blog/instagram-marketing-statistics.

5. Statistics: how filters are used by Instagram’s most successful users
[online]. Kaptur, 2017 [visited on 2020-01-12]. Available from:
https://kaptur.co/statistics-how-filters-are-used-by-
instagrams-most-successful-users/.

6. Reverse Engineering Instagram’s “Hefe” Filter [online]. CoreyHoard,
2014 [visited on 2020-01-12]. Available from: https://s3-eu-
west-1.amazonaws.com/pfigshare-u-files/1726806/CoreyHoardReverseEngineeringHefe.
pdf.

7. What is Color Space [online]. Arc soft, 2016 [visited on 2020-
02-12]. Available from: http : / / www . arcsoft . com / topics /
photostudio-darkroom/what-is-color-space.html.

8. Understanding lens vignetting [online]. Red [visited on 2020-02-
13]. Available from: https://www.red.com/red- 101/lens-
vignetting.

9. JPEG Compression Algorithm [online]. Danoja Dias, 2017 [vis-
ited on 2020-02-14]. Available from: https : / / medium . com /
breaktheloop/jpeg-compression-algorithm-969af03773da.

49

https://github.com/homm/color-filters-reconstruction
http://lucillezimmerman.com/2017/01/07/instagramfilter/
http://lucillezimmerman.com/2017/01/07/instagramfilter/
http://www.sciencedirect.com/science/article/pii/S0167839601000863
http://www.sciencedirect.com/science/article/pii/S0167839601000863
https://99firms.com/blog/instagram-marketing-statistics
https://kaptur.co/statistics-how-filters-are-used-by-instagrams-most-successful-users/
https://kaptur.co/statistics-how-filters-are-used-by-instagrams-most-successful-users/
https://s3-eu-west-1.amazonaws.com/pfigshare-u-files/1726806/CoreyHoardReverseEngineeringHefe.pdf
https://s3-eu-west-1.amazonaws.com/pfigshare-u-files/1726806/CoreyHoardReverseEngineeringHefe.pdf
https://s3-eu-west-1.amazonaws.com/pfigshare-u-files/1726806/CoreyHoardReverseEngineeringHefe.pdf
http://www.arcsoft.com/topics/photostudio-darkroom/what-is-color-space.html
http://www.arcsoft.com/topics/photostudio-darkroom/what-is-color-space.html
https://www.red.com/red-101/lens-vignetting
https://www.red.com/red-101/lens-vignetting
https://medium.com/breaktheloop/jpeg-compression-algorithm-969af03773da
https://medium.com/breaktheloop/jpeg-compression-algorithm-969af03773da


BIBLIOGRAPHY

10. Chapter 24. Using Lookup Tables to Accelerate Color Transformations
[online]. Jeremy Selan, 2005 [visited on 2020-02-15]. Available
from: https://developer.nvidia.com/gpugems/gpugems2/
part - iii - high - quality - rendering / chapter - 24 - using -
lookup-tables-accelerate-color.

11. What is Matlab [online]. MathWorks [visited on 2020-02-16].
Available from: https://www.mathworks.com/discovery/what-
is-matlab.html.

12. Matlab - the language of technical computing [online]. MathWorks
[visited on 2020-01-11]. Available from: https://www.mathworks.
com/help/matlab/.

13. Gnome-photos [online]. Gnome [visited on 2020-05-21]. Available
from: https://gitlab.gnome.org/GNOME/gnome-photos.

50

https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-24-using-lookup-tables-accelerate-color
https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-24-using-lookup-tables-accelerate-color
https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-24-using-lookup-tables-accelerate-color
https://www.mathworks.com/discovery/what-is-matlab.html
https://www.mathworks.com/discovery/what-is-matlab.html
https://www.mathworks.com/help/matlab/
https://www.mathworks.com/help/matlab/
https://gitlab.gnome.org/GNOME/gnome-photos


A An electronic appendix

This thesis contains an electronic appendix which can be found at
https://is.muni.cz/auth/th/uy5lo//.
In the appendix, these files can be found:

∙ Python scripts used in the experiments

∙ Source code of the final implementation of the algorithm

A.1 Python scripts used in the experiments

In this part of the appendix, seven Python scripts are available. This
scripts can by customized and used for reverse-engineering another
image filter. Below are the descriptions for each of the scripts.

[Script 1] - Image test set generation.
[Script 2] - Separation of RGB channels plot
[Script 3] - Overlay detection
[Script 4] - Combining the black and white pixels
[Script 5] - Error computing
[Script 6] - Generating visual representation of the error
[Script 7] - RGB channels dependency graphs plot

A.2 Source code of the final implementation of the
algorithm

In this part of the appendix, the source code of the final implementa-
tion of the filter can be found.

[Implementation] - Source code from the file photos-operation-insta-
clarendon.c from the directory src of Gnome photos gitlab repository
[13].

51


	Context
	Introduction
	Reverse engineering the Clarendon filter
	 Introduction to the Clarendon filter
	 Experiments
	 Introduction to experiments
	 Detecting color space
	 Detecting pixel position dependency
	 Detecting inter-pixel dependency
	 Detecting inter-channel dependency


	Development of the filter algorithm
	 Introduction
	 Algorithm using lookup tables
	 Algorithm using equations

	Implementing the algorithm inside Gnome Photos
	 Introduction to Gnome development
	 Implementation of the 4 algorithms
	 Choosing one final algorithm

	Testing the visual accuracy of the naked eye
	Conclusion
	 Conclusion from the thesis
	 Visual comparison of the Clarendon filter and our reproduction of the filter

	Bibliography
	An electronic appendix
	 Python scripts used in the experiments
	 Source code of the final implementation of the algorithm


