
Reverse Engineering Instagram’s “Hefe” Filter

Corey Hoard

October 22, 2014

Course: CS 4300 – Computer Graphics
Instructor: Dr. Nik Bear Brown

Abstract

Instagram is a popular image-sharing platform available for mobile devices that allows users to capture
pictures, apply one of several “artistic” filters, and post the resultant images online for others to view.
These filters are presented as black-box systems, providing no user-definable parameters or configurations,
save the input image itself. In this exercise, I recreated the Instagram filter “Hefe.”

To achieve this, I generated a set of test images, applied the filter to each one in the Instagram app,
and compared the pre- and post-filter images quantitatively. As a result of this exercise, I distilled my
work down to a simple function that replicates the “Hefe” filter when applied to an image array. I was
also able to create an inverse filter which, given an Instagram-processed image, was able to recover the
original data. The images produced by these functions were accurate to a high degree of similarity.

1

1 Introduction

This exercise focused on analyzing and recreating the internals of an Instagram filter as a black-box system.
Visually, “Hefe”, the filter chosen, increases the contrast, applies a red-orange color cast, and adds a vignette
effect to an image.

In order to recreate these effects, I chose to work primarily in MATLAB, though some portions of the
code were written in Python. Due to the wide range of methods employed, the analysis was broken down
into several experiments. The Test Set Generation phase handled the generation of a set of test images.
The Pre-Analysis phase consisted of various graphs of transformations performed by the filter, and provided
insight on how to best proceed. Experiment 1 checked for the existence of blurring kernels and verified inter-
pixel independence. Experiment 2 confirmed per-channel linear independence and function decomposability.
Experiment 3 generated polynomial regressions of channel transforms and built several models of the filter’s
tone mapping. Experiment 4 selected the best tone mapping model as produced by Experiment 3, and
validated the appropriateness of the model used. Experiment 5 reconstructed the vignette effect applied
by the filter and integrated it with the tone mapping model, signifying the successful completion of the
exercise. Both quantitative and qualitative analysis were made after each experiment to evaluate its success,
the results of which are included in the relevant sections. Full code for each experiment is provided in the
appendix.

As a result of the experiments and analyses performed, I have determined that Instagram’s “Hefe” filter
operates by first applying a vignette effect using a multiplicative blend mode with a predefined mask image
then tone mapping the resultant composite with three polynomial tone mapping functions, applied per
channel in RGB-space. Succinct code to perform this transformation is provided in this paper’s conclusion.

2 Procedures and Analysis

2.1 Test Set Generation

I began my analysis by creating a set of standardized test images on which to apply the “Hefe” filter. Each
image is 640px x 640px, the standard dimensions of an Instagram photo. Most images were generated by
a Python script, available in Appendix B.1, with the exception of the image grad_bar that was created by
hand in Photoshop. Descriptions of each test image are available in Appendix A, and the images themselves
are in the accompanying archive, ‘Data Set.zip’.

After generation, each image was uploaded to the test device, an Apple iPhone 4S, via Dropbox, then
imported into the Instagram app and subjected to the filter. The transformed images were recovered using
the online service instaport.me. Each image was then renamed and converted to the .png format using the
OS X terminal command sips.

2.2 Pre-Analysis

During the pre-analysis phase, I plotted the filter’s transfer function by mapping the x-axis to the value of
the unfiltered image and the y-axis to that of the filtered image, separated by channel in both RGB and
HSV space. This provided me with a general feel for the types of transforms that “Hefe” was performing.
Some select examples are reproduced below and a sample of the code used to generate these images can be
found in Appendix B.2.

2

From left to right: RGB transfer function for bird_0 in three dimensions, and a single row slice.

From left to right: RGB transfer function for a row of hv_plane, HSV transfer function for a row of
vegetables_0.

3

HSV transfer function for a row and column of hv_plane.

From these images, it was apparent to me that the filter was applying some sort of tone mapping curves
to the image’s channels. The chaotic nature of the HSV -space plots in comparison to the more ordered
RGB-space plots suggested that this transform was taking place in RGB-space. The V channel of the HSV
plots, however, seemed most co-linear, which makes sense in this model as it is a linear combination of the
RGB channels rather than a metric of their differences.

2.3 Experiment 1

2.3.1 Purpose and Procedures

Experiment 1 was designed to test for the absence of blurring kernels, and by extension, inter-pixel inde-
pendence. Verifying that each pixel in the filtered image had no dependence on the value of its neighbors
allowed me to reduce the model’s complexity by representing it as a function f : R5 → R3.

In order to test this, I analyzed the test images checker_bw_0, checker_bw_1, horiz_bw_stripe_0,
horiz_bw_stripe_1, vert_bw_stripe_0, vert_bw_stripe_1, solid_000000, and solid_FFFFFF. Comple-
mentary pairs of patterns were interleaved, and each pixel was compared to the solid color plane of the same
value. Vis., the black pixels from each pattern were compared to the corresponding location in solid_000000,
and the white pixels to solid_FFFFFF. Pixelwise squared-error terms were calculated and plotted along with
the total error for each image set, seen in the next section. The code used to produce this data is available
in the appendix.

4

2.3.2 Data

Square error terms for checker pattern. Scale is on the order of 10−3.

Square error terms for vertical line pattern. Scale is on the order of 10−2.

5

Square error terms for horizontal line pattern. Scale is on the order of 10−3.

Detail of error terms for the vertical line pattern. Note the 8px width of error bands.

6

Image Channel
Black White

Mean Variance Mean Maxiumum

Checkerboard
Red 0.001976 0.009612 0.001921 0.012933

Green 0.001076 0.007443 0.001963 0.009612
Blue 0.000509 0.005552 0.001132 0.012057

Vertical
Red 0.008586 0.028435 0.008540 0.025852

Green 0.007130 0.023391 0.008247 0.027128
Blue 0.005293 0.019931 0.006258 0.022207

Horizontal
Red 0.000253 0.003460 0.000274 0.006151

Green 0.000020 0.000554 0.000131 0.001538
Blue 0.000000 0.000138 0.000182 0.007443

Squared error terms for each image and channel (normalized to [0, 1])

2.3.3 Analysis

At first glance, the error plots showed patterned differences that could indicate some sort of blurring kernel.
However, on closer inspection, the pattern was found to be regularly spaced on an 8px x 8px grid, the same
dimensions as a JPEG macroblock. The sinusoidal nature of the error was also highly reminiscent of the
low-order DCT coefficients used by JPEG. This suggested that the error pattern was an artifact of the
compression applied by Instagram, rather than the filter itself.

Even with these compression artifacts, the table still shows very low mean squared error, on the order
of 10−3 for most test cases. With this in mind, I came to the conclusion that each pixel of the filter’s
output is independent of its neighbors, and can be reduced to a function of only pixel color and position,
(r′, g′, b′) = f(r, g, b, x, y). This simplification vastly reduced the analysis needed to recreate the filter effect.

2.4 Experiment 2

2.4.1 Purpose and Procedures

Based on the graphs produced during the pre-analysis, I hypothesized that the filter operated in RGB-space
with independent transformations per channel. Experiment 2 was designed to confirm that the filter had
per-channel independence rather than operating on a linear combination of channels.

To accomplish this, I plotted the R channels of rg_plane and rb_plane and the B channels of gb_plane
and rb_plane. These were visually inspected for uniformity across variances in the other channels. In
addition, I also used the transfer band plotting code from the Pre-Analysis phase to compare the R channels
of rg_plane and rb_plane as the row and column (and, by extension, the G and B channels) varied. The
resultant graph was inspected for linearity.

I also applied the filter to each RGB primary, and to solid white and black. For each filtered primary,
I verified that each channel was equivalent to the corresponding channel of either the solid white or black
filtered image. For example, when testing solid_00FF00, I compared the R and B channels to the respective
channels in solid_000000 and the G channel to its respective channel in solid_FFFFFF. As in the previous
experiment, I plotted the pixelwise squared-error term and outputted the mean of each primary and channel’s
error, available in the next section.

7

2.4.2 Data

Comparison of the R and B channels along primary gradients.

A representative frame of a video showing the plot of R channels in rg_plane and rb_plane as the B/G
values vary. Orange varies row over time, blue varies column.

8

Square error terms for per-channel primary comparisons. Scale is on the order of 10−4.

MSE Primary
Channel Red Green Blue

Red 0.000118 0.000004 0.000002
Green 0.000001 0.000023 0.000001
Blue 0.000002 0.000013 0.000315

Mean squared-error comparing channels of primary planes

2.4.3 Analysis

The comparison of the R and B channels along primary gradients seemed relatively uniform with the excep-
tion of the borders where the secondary channel changed from 1 to 0. At first, I though that this could be
evidence of some inter-channel dependence. However, I came to the conclusion that this discontinuity was
a simply a ringing effect caused by the JPEG compression applied by Instagram. This is supported by the
fact that JPEG encodes overall luminance as a separate channel, which would be affected by changes in all
three RGB channels. My suspicions were confirmed upon noticing that the border on the on the RG plane
was about 5 times more pronounced than that of the RB plane; the JPEG algorithm first converts images
to Y ′CbCr space, in which the luminance channel encodes green with approximately 5 times more weight
than blue.

The transfer band plot supported the hypothesis that the filter acts independently on each channel as
well. As the green and blue values changed, the red points remained on a uniform line, indicating that no
modification to the red value was made beyond the filter’s normal transform.

Lastly, the square-error plots for per-channel primary comparisons were remarkably close to zero, con-
firming that the filter does in fact act separately on each channel. This conclusion allowed me to further
simplify the filter model. The previous model, (r′, g′, b′) = f(r, g, b, x, y), could now be reduced to a set of
three independent functions: (r′, g′, b′) = (fr(r, x, y), fg(g, x, y), fb(b, x, y)). This reduction spared me from
computing any linear combinations or inter-channel effects and allowed me to analyze each RGB channel
separately.

9

2.5 Experiment 3

2.5.1 Purpose and Procedures

Experiment 3 was designed to use polynomial regression to model each of the functions fr(r, x, y), fg(b, x, y),
and fb(b, x, y). Since Experiment 2 confirmed that each channel was processed independently, I was able
to perform each regression concurrently using a single data set: grad_bar. Because the filter is position-
dependent only at the edges (within the vignetted area), the greyscale gradients in this test image were
placed only toward the center of the image. This allowed me to form a more generalized model that excluded
vignetting and could be applied to each pixel uniformly. The data points were formed by assigning the value
of each channel in the unfiltered image to the x-coördinate and that of the filtered image to the y-coördinate.
These points were then run through MATLAB’s Curve Fitting Toolbox and regression coefficients were
recorded.

During this experiment, I calculated three polynomials per channel: one of degree 3, one of degree six,
and one of degree six performed on a smoothed data set. The data set was smoothed by taking the mean
of observed y-values for each x-value in the data set, accounting for slight spatial variations created by the
vignette. This was done to create a smoother and more generalized output polynomial.

2.5.2 Data

Data points to be fit for each channel. Smoothed version overlaid in black.

10

Polynomial regression being performed on the green channel of the full data set.

Polynomial regression being performed on the green channel of the smoothed data set.

11

Model Channel Regression Polynomial

Full, deg 3
Red −1.389r3 + 1.768r2 + 0.5899r

Green −1.696g3 + 2.52g2 + 0.1407g
Blue −1.698b3 + 2.731b2 + 0.09003b

Full, deg 6
Red −13.77r6 + 42.05r5 − 45.83r4 + 19.54r3 − 1.627r2 + 0.6362r

Green −12.6g6 + 41.85g5 − 51.04g4 + 26.07g3 − 3.878g2 + 0.5905g
Blue −1.263b6 + 10.28b5 − 19.66b4 + 13.09b3 − 1.831b2 + 0.3575b

Smoothed, deg 6
Red −13.47r6 + 41.23r5 − 45.04r4 + 19.17r3 − 1.492r2 + 0.5954r

Green −12.28g6 + 41.09g5 − 50.52g4 + 26.03g3 − 3.916g2 + 0.58g
Blue −1.066b6 + 9.679b5 − 19.09b4 + 12.92b3 − 1.835b2 + 0.3487b

Polynomial models generated by the Curve Fitting Toolbox. Note that the constant term of each
polynomial was artificially restricted to 0, as the filter had already confirmed not to affect black pixels.

2.5.3 Analysis

Each polynomial regression, particularly those of degree 6, using both smoothed and full data, showed strong
correlation to the test set, with R values in excess of 0.999. Since no extrapolation would be done using
these models, I was not concerned with any possible overfitting, and this was not taken into consideration.
The high degree of correlation attained leads me to believe that Instagram uses a polynomial tone mapping
function internally, though the actual mechanics used have no impact on the filter’s recreation, as the effects
were replicated almost exactly using the above polynomials.

2.6 Experiment 4

2.6.1 Purpose and Procedures

Experiment 4 tested the accuracy of the three polynomial models by applying them to various test images
and comparing the result to the results of the actual filter. For each test image and model, the spatial
squared-error was plotted and its mean recorded with the intent of determining the best-fitting polynomial
coefficients.

2.6.2 Data

Squared-error terms for the degree 6 smoothed data set polynomial model applied to vegetables_0. Scale
is from [0, 0.25].

12

Image Model MSE SSE
Full, deg 3 0.004826 5930.363931

vegetables_0 Full, deg 6 0.004924 6049.998903
Smoothed, deg 6 0.004693 5766.639317

Full, deg 3 0.006739 8281.192691
landscape_0 Full, deg 6 0.007050 8663.541021

Smoothed, deg 6 0.006612 8125.435572
Full, deg 3 0.000050 61.160565

grad_bar Full, deg 6 0.000020 24.781046
Smoothed, deg 6 0.000025 30.632892

Mean and sum squared-error for various polynomial models applied to three test images.

2.6.3 Analysis

Of the three regressions produced in the previous experiment, the six-degree polynomial generated from the
smoothed data set demonstrated the highest accuracy. Looking at the spatial error analysis, the majority of
the error was concentrated at the edges of the input image. This was expected and is of no concern, as the
models tested made no attempt to take vignetting into account.

After the most accurate polynomial was selected, an inverse function was generated, again running the
Curve Fitting Toolbox after interposing the x and y data sets, to produce the following final tone map
polynomials:

Forward
Red −13.47r6 + 41.23r5 − 45.04r4 + 19.17r3 − 1.492r2 + 0.5954r

Green −12.28g6 + 41.09g5 − 50.52g4 + 26.03g3 − 3.916g2 + 0.58g
Blue −1.066b6 + 9.679b5 − 19.09b4 + 12.92b3 − 1.835b2 + 0.3487b

Inverse
Red −3.835r6 + 12.81r5 − 17.35r4 + 13.18r3 − 5.738r2 + 1.939r

Green −8.176g6 + 28.36g5 − 39.21g4 + 28.23g3 − 11.04g2 + 2.845g
Blue −27.59b6 + 85.64b5 − 103.7b4 + 62.86b3 − 20.07b2 + 3.905b

Plot of the forward tone map function for each channel.

13

2.7 Experiment 5

2.7.1 Purpose and Procedures

Experiment 5 proposed two potential models for applying “Hefe”’s vignetting effect: addition of a value from
[−1, 0], and multiplication by a value from [0, 1]. Each method was tested both forwards and backwards,
applying the proposed effect to the original image and testing against the corresponding filtered image, and
inverting filtered image for comparison with the original image. The tone mapping polynomials from the
previous experiment were used to isolate the vignetting effect of solid_FFFFFF, and the resultant data was
applied to several test images, once again recording squared-error terms both spatially and cumulatively.

2.7.2 Data

Comparison of backward additive and multiplicative application of vignette data to bird_0. Scale is from
[0, 0.1].

14

Comparison of forward additive and multiplicative application of vignette data to bird_0. Scale is from
[0, 0.1].

Image Additive MSE Multiplicative
bird_0 0.016177 0.000750

landscape_0 0.053105 0.002822
hv_plane 0.880683 0.000577

Forward Tests

Image Additive MSE Multiplicative MSE
bird_0 0.015329 0.000757

Backward Tests

2.7.3 Analysis

Both qualitatively and quantitatively, it was apparent that the vignette has been applied using a multi-
plicative blending mode. The vignette data, extracted from solid_FFFFFF by applying the inverse tone
map function, was saved as an image, vignette.png, for use in the final filter recreation, and is reproduced
below:

15

Vignette mask, to be applied multiplicatively.

3 Conclusion

Over the course of these five experiments, the Instagram filter “Hefe” was reduced to a set of four functions:

(r′, g′, b′) = (fr(r ∗ vr(x, y)), fg(g ∗ vg(x, y)), fb(b ∗ vb(x, y)))

fr(r) = −13.47r6 + 41.23r5 − 45.04r4 + 19.17r3 − 1.492r2 + 0.5954r

fg(g) = −12.28g6 + 41.09g5 − 50.52g4 + 26.03g3 − 3.916g2 + 0.58g

fb(b) = −1.066b6 + 9.679b5 − 19.09b4 + 12.92b3 − 1.835b2 + 0.3487b

where v : N2 → R3 takes position inputs in [0, 640] corresponding to the position of the pixel and outputs
the value of vignette.png at that pixel, in the range [0, 1].

3.1 Implementation

MATLAB functions to apply or inverse the “Hefe” filter are as follows:

1 function [image out] = apply hefe(image in)
2 % Applies the Instagram filter 'Hefe' to an image
3 % Expects and returns a 640x640x3 double array in the range [0, 1]
4

5 tonemap coeff = ...
6 [-13.47 41.23 -45.04 19.17 -1.492 0.5954 0.0; ...
7 -12.28 41.09 -50.52 26.03 -3.916 0.58 0.0; ...
8 -1.066 9.679 -19.09 12.92 -1.835 0.3487 0.0];
9

10 vignette = double(imread('vignette.png'))/255;
11

12 result = image in .* vignette;
13 for channel = 1:3
14 result(:,:,channel) = polyval(tonemap coeff(channel, :), result(:,:,channel));
15 end
16 image out = result;
17 end

16

1 function [image out] = reverse hefe(image in)
2 % Inverses the Instagram filter 'Hefe' on an image
3 % Expects and returns a 640x640x3 double array in the range [0, 1]
4

5 inverse tonemap coeff = ...
6 [-3.835 12.81 -17.35 13.18 -5.738 1.939 0.0; ...
7 -8.176 28.36 -39.21 28.23 -11.04 2.845 0.0; ...
8 -27.59 85.64 -103.7 62.86 -20.07 3.905 0.0];
9

10 vignette = double(imread('vignette.png'))/255;
11

12 result = zeros(size(image in));
13 for channel = 1:3
14 result(:,:,channel) = polyval(inverse tonemap coeff(channel, :), image in(:,:,channel));
15 end
16

17 image out = result ./ vignette;
18

19 end

3.2 Example

The recreated filter applied to bird_0. First row, from left to right: original image, filtered image with
inverse filter applied, spatial sum-square plot, scale from [0, 0.07]. Second row, from left to right: filtered

image, original image with recreated filter applied, spatial sum-square plot, scale from [0, 0.045].

From the spatial square-error plots, the majority of error was concentrated around sharp edges. This is
most likely due to the JPEG compression that Instagram applied, which was not replicated by this recreation.
This difference is not significant nor visible in the final images.

17

A Test Images and Data Set

All images can be viewed in the accompanying archive, ‘Data Set.zip’. Descriptions of the images used
during testing are provided below.

Name Description
bird_0

Ordinary photographic images of outdoor scenes used to simulate real-world
applications of the filter.

vegetables_0

landscape_0

checker_bw_0
Checkerboard patterns formed by alternating every other pixel white or
black. The two images are inverse of each other.

checker_bw_1

rg_plane
Color planes made by mapping two RGB channels at a time to spatial
position.

gb_plane

rb_plane

horiz_bw_stripe_0

Parallel stripe patterns made by alternating black and white every other
row or column. ‘0’ and ‘1’ pairs are inverses of each other.

horiz_bw_stripe_1

vert_bw_stripe_0

vert_bw_stripe_1

horiz_grey Horizontal and vertical greyscale gradients spanning the full width and
height.vert_grey

hs_plane
Color planes made by mapping two HSV channels at a time to spatial
position.

sv_plane

hv_plane

solid_000000

Solid images composed of a single color, specified in hex.

solid_0000FF

solid_00FF00

solid_FF0000

solid_7F7F7F

solid_FFFFFF

grad_bar Several greyscale gradients in various orientations, positioned to avoid the
majority of vignetting effects.

B Code

B.1 Test Set Generation

1 import matplotlib.pyplot as plt
2 import matplotlib.image as mpimg
3 import numpy as np
4 from skimage import color
5 import skimage.filter as filters
6 from skimage import img as float, img as ubyte
7

8 imgsize = (640, 640)
9

10 print 'Generating...'
11

12 test images = dict()
13 print 'solid colors'
14 test images['solid FFFFFF'] = np.ones((imgsize[0], imgsize[1], 3))
15 test images['solid 000000'] = np.zeros((imgsize[0], imgsize[1], 3))
16 test images['solid FF0000'] = np.ones((imgsize[0], imgsize[1], 3)) * [1.0, 0.0, 0.0]
17 test images['solid 00FF00'] = np.ones((imgsize[0], imgsize[1], 3)) * [0.0, 1.0, 0.0]
18 test images['solid 0000FF'] = np.ones((imgsize[0], imgsize[1], 3)) * [0.0, 0.0, 1.0]
19 test images['solid 7F7F7F'] = np.ones((imgsize[0], imgsize[1], 3)) * 0.5

18

20 print 'stripes'
21 test images['horiz bw stripe 0'] = np.ones((imgsize[0], imgsize[1], 3))
22 test images['horiz bw stripe 1'] = np.zeros((imgsize[0], imgsize[1], 3))
23 for x in range(0, imgsize[0], 2):
24 test images['horiz bw stripe 0'][x,:,:] = 0.0
25 test images['horiz bw stripe 1'][x,:,:] = 1.0
26 test images['vert bw stripe 0'] = np.ones((imgsize[0], imgsize[1], 3))
27 test images['vert bw stripe 1'] = np.zeros((imgsize[0], imgsize[1], 3))
28 for y in range(0,imgsize[1], 2):
29 test images['vert bw stripe 0'][:,y,:] = 0.0
30 test images['vert bw stripe 1'][:,y,:] = 1.0
31 print 'grids'
32 grid = np.ogrid[0:imgsize[0], 0:imgsize[1]]
33 test images['checker bw 0'] = color.gray2rgb(((grid[0] + grid[1]) % 2) == 0)
34 test images['checker bw 1'] = color.gray2rgb(((grid[0] + grid[1]) % 2) != 0)
35 print 'planes (allocate)'
36 test images['rg plane'] = np.ones((imgsize[0], imgsize[1], 3), dtype=np.uint8)
37 test images['gb plane'] = np.ones((imgsize[0], imgsize[1], 3), dtype=np.uint8)
38 test images['rb plane'] = np.ones((imgsize[0], imgsize[1], 3), dtype=np.uint8)
39 test images['hs plane'] = np.ones((imgsize[0], imgsize[1], 3), dtype=np.float)
40 test images['sv plane'] = np.ones((imgsize[0], imgsize[1], 3), dtype=np.float)
41 test images['hv plane'] = np.ones((imgsize[0], imgsize[1], 3), dtype=np.float)
42 test images['horiz grey'] = np.ones((imgsize[0], imgsize[1]), dtype=np.float)
43 test images['vert grey'] = np.ones((imgsize[0], imgsize[1]), dtype=np.float)
44 print 'planes (specify)'
45 for x in range(0, imgsize[0]):
46 for y in range(0, imgsize[1]):
47 test images['rg plane'][x,y,:] *= [x % 256, y % 256, 0]
48 test images['gb plane'][x,y,:] *= [0, x % 256, y % 256]
49 test images['rb plane'][x,y,:] *= [x % 256, 0, y % 256]
50 test images['hs plane'][x,y,:] *= [x / float(imgsize[0]), y / float(imgsize[1]), 1.0]
51 test images['sv plane'][x,y,:] *= [0.0, x / float(imgsize[0]), y / float(imgsize[1])]
52 test images['hv plane'][x,y,:] *= [x / float(imgsize[0]), 1.0, y / float(imgsize[1])]
53 test images['vert grey'][x,y] = x / float(imgsize[0])
54 test images['horiz grey'][x,y] = y / float(imgsize[1])
55 print 'planes (convert)'
56 test images['hs plane'] = color.hsv2rgb(test images['hs plane'])
57 test images['sv plane'] = color.hsv2rgb(test images['sv plane'])
58 test images['hv plane'] = color.hsv2rgb(test images['hv plane'])
59 test images['vert grey'] = color.gray2rgb(test images['vert grey'])
60 test images['horiz grey'] = color.gray2rgb(test images['horiz grey'])
61

62 print 'Saving...'
63 for name, img in test images.items():
64 plt.imsave(name + '.png', img as ubyte(img))
65

66 print 'Done'

B.2 Pre-Analysis

1

2 % This implementation was manually changed several times to generate the
3 % video set; below is a typical implementation.
4

5 figure(1);
6

7 rg plane filter = imread('Filter Data Set/hv plane filter.png');
8 rb plane filter = imread('Test Images/hv plane.png');
9

10 for i = 1:640
11

12 scatter(rb plane filter(i, :, 1)',rg plane filter(i, :, 1)','r');
13 hold on;
14 scatter(rb plane filter(i, :, 2)',rg plane filter(i, :, 2)','g');
15 scatter(rb plane filter(i, :, 3)',rg plane filter(i, :, 3)','b');

19

16

17 axis([0 255 0 255]);
18 title('RGB original vs filter (time indexes hue)');
19 xlabel('In');
20 ylabel('Out');
21 hold off;
22

23 M(i) = getframe;
24 end

20

B.3 Experiment 1

1 % Original checker images
2 checker bw 1 rgb = imread('Test Images/checker bw 1.png');
3 checker bw 0 rgb = imread('Test Images/checker bw 0.png');
4

5 % Filtered checkers
6 checker bw 1 filter rgb = imread('Filter Data Set/checker bw 1 filter.png');
7 checker bw 0 filter rgb = imread('Filter Data Set/checker bw 0 filter.png');
8

9 % Filtered solids
10 solid FFFFFF filter rgb = imread('Filter Data Set/solid FFFFFF filter.png');
11 solid 000000 filter rgb = imread('Filter Data Set/solid 000000 filter.png');
12

13 % Extract a channel and convert to float
14 for channel = 1:3
15 checker bw 1 = double(checker bw 1 rgb(:,:,channel)) / 255;
16 checker bw 0 = double(checker bw 0 rgb(:,:,channel)) / 255;
17 checker bw 1 filter = double(checker bw 1 filter rgb(:,:,channel)) / 255;
18 checker bw 0 filter = double(checker bw 0 filter rgb(:,:,channel)) / 255;
19 solid FFFFFF filter = double(solid FFFFFF filter rgb(:,:,channel)) / 255;
20 solid 000000 filter = double(solid 000000 filter rgb(:,:,channel)) / 255;
21

22 % First split the pixels
23 black index 1 = find(checker bw 1 < 0.5);
24 white index 1 = find(checker bw 1 ≥ 0.5);
25 black index 0 = find(checker bw 0 < 0.5);
26 white index 0 = find(checker bw 0 ≥ 0.5);
27

28 % interleave the black and white pixels from the two checkerboards
29 black reconstruct = zeros(size(solid 000000 filter));
30 white reconstruct = zeros(size(solid FFFFFF filter));
31 black reconstruct(black index 1) = checker bw 1 filter(black index 1);
32 black reconstruct(black index 0) = checker bw 0 filter(black index 0);
33 white reconstruct(white index 1) = checker bw 1 filter(white index 1);
34 white reconstruct(white index 0) = checker bw 0 filter(white index 0);
35

36 % Take the squared difference of the interleaved and solid image
37 diff white = (white reconstruct - solid FFFFFF filter) .ˆ 2;
38 diff black = (black reconstruct - solid 000000 filter) .ˆ 2;
39

40 display(sprintf('Examining channel: %d', channel))
41

42 display(sprintf('Black Pixels - Mean: %f Var: %f', ...
43 mean(black reconstruct(:)), var(black reconstruct(:))))
44 display(sprintf('White Pixels - Mean: %f Var: %f', ...
45 mean(white reconstruct(:)), var(white reconstruct(:))))
46

47 display(sprintf('Square error white - Mean: %f Max: %f', mean(diff white(:)), ...
max(diff white(:))))

48 display(sprintf('Square error black - Mean: %f Max: %f', mean(diff black(:)), ...
max(diff black(:))))

49 display(' ');
50

51 subplot(2, 3, channel);
52 imagesc(diff white);
53 title(sprintf('Channel %d - White', channel));
54 colorbar;
55 subplot(2, 3, channel + 3);
56 imagesc(diff black);
57 title(sprintf('Channel %d - Black', channel));
58 colorbar;
59 end

21

B.4 Experiment 2

1 % Filtered solids
2 solid FFFFFF filter = imread('Filter Data Set/solid FFFFFF filter.png');
3 solid 000000 filter = imread('Filter Data Set/solid 000000 filter.png');
4 solid 0000FF filter = imread('Filter Data Set/solid 0000FF filter.png');
5 solid 00FF00 filter = imread('Filter Data Set/solid 00FF00 filter.png');
6 solid FF0000 filter = imread('Filter Data Set/solid FF0000 filter.png');
7

8 % Primary planes, original and filtered
9 gb plane = imread('Test Images/gb plane.png');

10 rb plane = imread('Test Images/rb plane.png');
11 rg plane = imread('Test Images/rg plane.png');
12 gb plane filter = imread('Filter Data Set/gb plane filter.png');
13 rb plane filter = imread('Filter Data Set/rb plane filter.png');
14 rg plane filter = imread('Filter Data Set/rg plane filter.png');
15

16 % Visually compare the channels between planes
17 figure(1);
18 subplot(2,2,1);
19 imagesc(rb plane filter(:,:,1)); % red
20 title('RB - Red Channel');
21 subplot(2,2,2);
22 imagesc(rg plane filter(:,:,1)); % red
23 title('RG - Red Channel');
24 subplot(2,2,3);
25 imagesc(gb plane filter(:,:,3)); % blue
26 title('GB - Blue Channel');
27 subplot(2,2,4);
28 imagesc(rb plane filter(:,:,3)); % blue
29 title('RB - Blue Channel');
30

31

32 figure(2);
33

34 % Compare solid primaries to corresponding BW planes
35 primaries = {solid FF0000 filter, solid 00FF00 filter, solid 0000FF filter};
36 for primary = 1:3
37 for channel = 1:3
38 subplot(3, 3, primary + channel * 3 - 3);
39 x = primaries{primary};
40 if primary == channel % compare to white
41 y = solid FFFFFF filter;
42 else % compare to black
43 y = solid 000000 filter;
44 end
45 differences = (double(x(:,:,channel))/255 - double(y(:,:,channel))/255) .ˆ 2;
46 display(sprintf('Primary %d channel %d MSE: %f VSE: %f Max: %f', primary, ...

channel, mean(differences(:)), var(differences(:)), max(differences(:))))
47 imagesc(differences);
48 title(sprintf('Comparing primary %d to solid BW on channel %d', primary, channel));
49 colorbar;
50 end
51 end

22

B.5 Experiment 3

1 grad bar filter = (imread('Filter Data Set/grad bar filter.png'));
2 grad bar = (imread('Test Images/grad bar.png'));
3

4 colors = {'r','g','b'};
5

6 % Select a single channel to collect data about
7 channel = 1;
8

9

10 x = grad bar(:, :, channel);
11 y = grad bar filter(:, :, channel);
12 scatter(x(:), y(:), colors{channel});
13 hold on;
14

15 % Take mean along each input value to average along the output set.
16 totals = zeros(256,1);
17 counts = zeros(256, 1);
18 for i = 1:numel(x)
19 totals(x(i)+1) = totals(x(i)+1) + double(y(i));
20 counts(x(i)+1) = counts(x(i)+1) + 1;
21 end
22 idx = find(counts > 0);
23 val = totals(idx) ./ counts(idx);
24

25 % Plot scatter and vertical average
26 plot(idx, val, 'k');
27 hold off;
28

29 % Rescale
30 vert avg y = double(val)/255;
31 vert avg x = double(idx)/255;
32

33 full y = double(y(:))/255;
34 full x = double(x(:))/255;

23

B.6 Experiment 4

1 vertical avg coeff = ...
2 [-13.47 41.23 -45.04 19.17 -1.492 0.5954 0.0; ...
3 -12.28 41.09 -50.52 26.03 -3.916 0.58 0.0; ...
4 -1.066 9.679 -19.09 12.92 -1.835 0.3487 0.0];
5

6 full d3 coeff = ...
7 [-1.389 1.768 0.5899 0.0; ...
8 -1.696 2.52 0.1407 0.0; ...
9 -1.698 2.731 -0.09003 0.0];

10

11 full d6 coeff = ...
12 [-13.77 42.05 -45.83 19.54 -1.627 0.6362 0.0; ...
13 -12.6 41.85 -51.04 26.07 -3.878 0.5905 0.0; ...
14 -1.263 10.28 -19.66 13.09 -1.831 0.3575 0.0];
15

16 data set = double(imread('Filter Data Set/grad bar filter.png'))/255;
17 input image = double(imread('Test Images/grad bar.png'))/255;
18

19 recreation = zeros(size(input image));
20

21 colors = {'Red','Green','Blue'};
22 for channel = 1:3
23 subplot(1,3,channel);
24 recreation(:,:,channel) = polyval(vertical avg coeff(channel, :), ...
25 input image(:,:,channel));
26 difference = (recreation - data set) .ˆ 2;
27 imagesc(difference(:,:,channel));
28 colorbar;
29 title(sprintf('Square Difference - Channel %s', colors{channel}));
30 end
31 display(sprintf('Mean: %f Sum: %f Var: %f Max: %f', mean(difference(:)), ...

sum(difference(:)), var(difference(:)), max(difference(:))));

24

B.7 Experiment 5

1 vertical avg coeff = ...
2 [-13.47 41.23 -45.04 19.17 -1.492 0.5954 0.0; ...
3 -12.28 41.09 -50.52 26.03 -3.916 0.58 0.0; ...
4 -1.066 9.679 -19.09 12.92 -1.835 0.3487 0.0];
5

6 inverse color coeff = ...
7 [-3.835 12.81 -17.35 13.18 -5.738 1.939 0.0; ...
8 -8.176 28.36 -39.21 28.23 -11.04 2.845 0.0; ...
9 -27.59 85.64 -103.7 62.86 -20.07 3.905 0.0];

10

11 solid white filter = double(imread('Filter Data Set/solid FFFFFF filter.png'))/255;
12 solid grey filter = double(imread('Filter Data Set/solid 7F7F7F filter.png'))/255;
13 data set = double(imread('Filter Data Set/vegetables 0 filter.png'))/255;
14 input image = double(imread('Test Images/vegetables 0.png'))/255;
15

16

17 % undo the polynomial
18 vignette = zeros(size(input image));
19 for channel = 1:3
20 vignette(:,:,channel) = polyval(inverse color coeff(channel, :), ...
21 solid white filter(:,:,channel));
22 end
23

24 % foreward tests
25 forward add = input image + vignette - 1.0;
26 forward mult = input image .* vignette;
27 for channel = 1:3
28 forward add(:,:,channel) = polyval(vertical avg coeff(channel, :), ...
29 forward add(:,:,channel));
30 forward mult(:,:,channel) = polyval(vertical avg coeff(channel, :), ...
31 forward mult(:,:,channel));
32 end
33

34 diff add = sum((forward add - data set) .ˆ 2, 3);
35 diff mult = sum((forward mult - data set) .ˆ 2, 3);
36

37 figure;
38

39 subplot(2,2,1);
40 image(forward add);
41 title('Vignetting via addition');
42

43 subplot(2,2,2);
44 image(forward mult);
45 title('Vignetting via multiplication');
46

47 subplot(2,2,3);
48 imagesc(diff add,[0.0 0.1]);
49 colorbar;
50 title('Square error for addition');
51

52 subplot(2,2,4);
53 imagesc(diff mult, [0.0 0.1]);
54 colorbar;
55 title('Square error for multiplication');
56

57 display('Foreward Tests:');
58 display(sprintf('Mean Squared Error for addition: %f', mean(diff add(:))));
59 display(sprintf('Mean Squared Error for multiplication: %f', mean(diff mult(:))));
60

61

62 % backwards tests
63 untint = zeros(size(input image));
64 for channel = 1:3

25

65 untint(:,:,channel) = polyval(inverse color coeff(channel, :), ...
66 data set(:,:,channel));
67 end
68

69 backward mult = untint ./ vignette;
70 backward add = untint - vignette + 1.0;
71 diff add = sum((backward add - input image) .ˆ 2, 3);
72 diff mult = sum((backward mult - input image) .ˆ 2, 3);
73

74 figure;
75

76 subplot(2,2,1);
77 image(backward add);
78 title('Un-Vignetting via addition');
79

80 subplot(2,2,2);
81 image(backward mult);
82 title('Un-Vignetting via multiplication');
83

84 subplot(2,2,3);
85 imagesc(diff add,[0.0 0.1]);
86 colorbar;
87 title('Square error for addition');
88

89 subplot(2,2,4);
90 imagesc(diff mult, [0.0 0.1]);
91 colorbar;
92 title('Square error for multiplication');
93

94 display('Backward Tests:');
95 display(sprintf('Mean Squared Error for addition: %f', mean(diff add(:))));
96 display(sprintf('Mean Squared Error for multiplication: %f', mean(diff mult(:))));
97

98

99 figure;
100 subplot(2,1,1);
101 imagesc(vignette(:,:,1) - vignette(:,:,2));
102 colorbar;
103

104

105 subplot(2,1,2);
106 imagesc(vignette(:,:,1) - vignette(:,:,3));
107 colorbar;
108

109 imwrite(vignette, 'vignette.png');

26

C References

“JPEG.” Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 18 Oct 2014. Web. 18 Oct 2014.
https://en.wikipedia.org/wiki/JPEG

“MATLAB Documentation.” The MathWorks, Inc. 2014. Web. 18 Oct 2014.
http://www.mathworks.com/help/index.html

“YCbCr.” Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 6 Oct 2014. Web. 18 Oct
2014. https://en.wikipedia.org/wiki/YCbCr

27

