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Abstract This paper presents an efficient constant-time algorithm for Gaussian filtering and also Gaussian derivative

filtering that provides a high approximate accuracy in a low computational complexity regardless of its filter window size.

The proposed algorithm consists of two key techniques: second-order shift properties of the Discrete Cosine/Sine Transforms

type-5 and dual-domain error minimization for finding optimal parameters. The former enables us to perform filtering in

fewer number of arithmetic operations as compared than some state-of-the-art algorithms without integral images. The latter

enables us to find the optimal filter size that provides the most accurate filter kernel approximation. Experiments show that

the proposed algorithm clearly outperforms state-of-the-art ones in computational complexity, approximate accuracy, and

accuracy stability.

Key words: constant-time Gaussian filtering, constant-time derivative Gaussian filtering, sliding DCT/DST, second-order shift
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1. Introduction

The Gaussian filter (GF) is one of the essential tools

in image processing and computer vision. Although one

may think that this long-historical linear filter sounds

old-fashion at the present day, it still plays fundamental

roles in many modern applications. For example, its

importance can be exemplified in the scale-space analy-

sis1), which is a successful method for dealing with some

visual information of varied sizes contained in an image,

and the bilateral filter2) 4), which is an efficient edge-

preserving smoothing filter. These two techniques have

achieved significant results in various tasks including

object recognition5), super resolution6), high-dynamic

range imaging7), stereo matching8), segmentation9), vi-

sual saliency10), edge detection11)12). The former itera-

tively applies the GF to a target image many times; the

latter is generally formed by iterations of GFs for fast

filtering13) 15). Thus, the GF is actively used in a wide

variety of modern image processing applications.

A principal problem for the GF is the computational

complexity proportional to its filter window size, which

is generally determined from the scale parameter σ of

the Gaussian kernel. This dependency on σ is a perfor-

mance bottleneck for filtering high-resolutional images

in particular because higher resolution requires large σ.
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Awidely known classical solution to overcome this prob-

lem is to use the Fast Fourier Transform (FFT), based

on convolution-multiplication property16). However, the

FFT and its inverse require additional computational

complexity and limit the size of target images, e.g.,

power-of-two. Hence, we discuss GF algorithms with

σ-independent computational complexity by tolerating

a slight sacrifice of approximate accuracy, known as a

constant-time GF (O(1) GF).

Many algorithms for the O(1) GF have been proposed

in the past and share the design concept that a Gaussian

kernel is decomposed into a sum or product of several

kernels able to be convolved in O(1)/pixel. We review

three major categories in the O(1) GF as follows:

Iterated box filtering17): A Gaussian kernel can be

decomposed into a product of several box kernels, c.f.,

the central limit theorem. In short, applying box filters

iteratively results in asymptoting a Gaussian-filtered

image. Any box filter can be operated in O(1) com-

plexity by using a moving-sum approach. However, it

has a difficulty to control approaching to a desired σ and

adjusting the approximate accuracy of output images.

Recursive Gaussian filtering18) 21): A Gaussian ker-

nel can be represented as a sum or a product of two

one-sided Gaussian kernels, which are filtered as two

low-order recursive filters regardless of σ. This approach

has produced the state-of-the-art performance in both

computational complexity and approximate accuracy.

However, as References22)23) observed, they tend to fail

the kernel approximation for large σ.
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Filtering with extended integral images24) 27): A

Gaussian kernel can be approximated by a linear sum

of splines24)25), polynomials26) or cosines27). We can con-

volve each term of the linear sum in O(1) by extending

the integral image techniques28)29). Above all, the Cosine

Integral Image (CII)27) achieves the most efficient per-

formance tradeoff in them. However, this category has

an essential problem of high computational complexity

caused by generating and restoring integral images.

A superiority of the CII underlies a spectrum spar-

sity of the Gaussian kernel. As classical methods with

a similar concept, we must mention the frequency sam-

pling method30) and the sliding Discrete Fourier Trans-

form (sliding DFT)31), which had been actively studied

in 1960-1980s. The former is a design method for ap-

proximating a finite-impulse response filter by sampling

its significant frequency components, and the latter is

a recursive method for computing short-time transform

coefficients of a target sequence. For example, this com-

bined algorithm was applied to the one-dimensional Ga-

bor filter32). Clearly, the CII and the sliding DFT with

the frequency sampling method share many points in

their concepts. In order to design a more efficient filter-

ing algorithm, we should understand and discuss these

methods comprehensively.

These existing algorithms have the following charac-

teristics and drawbacks. First, the CII requires integral

images, increasing computational complexity; by con-

trast, the sliding DFT runs without integral images.

Second, the CII employs the DCT-1 for kernel decom-

position; the sliding DFT employs the DFT. Since most

cases in real applications of image processing deal with

real data and real kernels, not complex, the DCT shows

an advantage in computational complexity. However,

the DCT-1 causes some offset error in kernel approxi-

mation as we demonstrate in Section 2. Third, in both

algorithms, manually setting the filter window size with-

out any consolidate theoretical criterion detracts their

performance and usability. For example, it is common

in the GF that the filter window size is manually deter-

mined, e.g., 2 �3σ� + 1, which supports 99.7% area of

the Gaussian kernel. However, we found that, in the

CII etc., this manual approach actually has much room

for improvements in approximate accuracy and compu-

tational complexity. It is clearly essential to find the

optimal parameters to achieve the highest approximate

accuracy. Because these discussions are extensively ap-

plicable to the Discrete Sine Transform (DST) and odd-

symmetric filters such as the first-derivative GF, we col-

lectively focus on the DCT and the DST hereafter.

This paper presents an efficient O(1) filtering al-

gorithm that provides a stably-high approximate ac-

curacy in low computational complexity. Our algo-

rithm targets one-dimensional, compact-support, nar-

rowband kernels including Gaussian kernel and deriva-

tive Gaussian kernels. Note that, because of their sep-

arability, these one-dimensional kernels can compose

multi-dimensional Gaussian, derivative Gaussian, and

Laplacian-of-Gaussian (LoG) kernels, which are widely

used in many applications. Our algorithm comprises

two proposed techniques: second-order shift proper-

ties of the sliding DCT/DST-5 and dual-domain error

minimization. The former requires the fewest number

of arithmetic operations without integral images, extra

components, and offset error as compared with the exist-

ing algorithms. The latter finds the optimal parameters

for kernel approximation via error minimization both in

spatial and frequency domains. These novel techniques

enhance the performance of the O(1) GF etc. in many

aspects such as computational complexity, approximate

accuracy, accuracy stability, and usability.

Major contributions of this paper are as follows:

1) We clarify the superiority of the DCT/DST-5 to the

DCT/DST-1 in kernel approximation and derive their

second-order shift properties for sliding transforms.

2) We formalize dual-domain error minimization, which

is a theoretical solution to find the optimal parameters

for our kernel approximation. This approach enhances

accuracy and improves usability such as only one man-

ual parameter and no complicated preprocessing.

3) We design an efficient constant-time algorithm for the

GF and its derivative filters based on the above two tech-

niques. Our algorithm outperforms the state-of-the-art

ones such as the recursive GFs in computational com-

plexity, approximate accuracy, and its stability.

The preliminary work for this paper are given in some

references23)33)34).

2. Filtering via Sliding DCT/DST-5

2. 1 Kernel approximation via DCT/DST-5

Consider decomposing a real kernel via a DCT. Let

ht ∈ R be a finite-length filter kernel with domain

t ∈ {−R, . . . , R} ⊂ N where R ∈ N is the kernel radius.

If ht is even symmetric such as the Gaussian kernel, then

it can be decomposed into a sum of cosine terms. Due

to various different assumptions of the even symmetry,

there exist eight patterns sharing the general form
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ht =

R∑
k=0

H(k) cos (ω(k + κ)(t+ τ)) , (1)

where ω ∈ { π
R , 2π

2R+1}, κ ∈ {0, 1
2}, τ ∈ {0, 1

2}, and H(k)

is the k-th weight coefficient. This decomposition is gen-

erally called an inverse DCT35) but simply called a DCT

in this paper. The variables ω, κ, and τ are determined

from an employed assumption for the even symmetry.

For example, ω = π
R corresponds to the DCT-1,2,3,4,

and ω = 2π
2R+1 corresponds to the DCT-5,6,7,8. Here,

we focus only on κ = 0 and τ = 0 because they pro-

duce easily-computable phase starting from zero. In the

remaining DCTs, the DCT-1 (ω = π
R ) assumes the sym-

metry of {fR−1, . . . , f1, f0, f1, . . . , fR}with the length of

2R, and the DCT-5 (ω = 2π
2R+1 ) assumes the symmetry

of {fR, . . . , f1, f0, f1, . . . , fR} with a length of 2R+1. In

signal processing, the DCT-1,2,3,4 (with an even-length

of period) have been traditionally much focused on than

the DCT/DST-5,6,7,8 (with an odd-length of period)35),

probably due to their affinity to butterfly computation.

In kernel approximation via the DCT-1 or the DCT-5,

we consider eliminating a cosine term in (1) and reveal

its negative effect. The total value of ht is rewritten as

R∑
t=−R

ht =
R∑

k=0

H(k)
R∑

t=−R

cos (ωkt)

= (2R+ 1)H(0) +

⎧⎨
⎩0 if ω = 2π

2R+1∑R
k=1 (−1)k H(k) otherwise

.

This equation implies that, even if we eliminate a co-

sine term as H(k) ← 0 except for k = 0, the total value

unchanges in the DCT-5 but changes in the DCT-1.

Evidently, the total area depends only on H(0) in the

DCT-5 because of its orthogonality, which arises from a

match between the period length of DCT-5 and the filter

window length. On the other hand, the DCT-1 produces

offset distortion of (−1)k H(k) after eliminating the k-th

cosine component. Even though it could be compen-

sated by adjusting H(0), such a heuristic solution would

break the direct relation to the DFT and would unguar-

antee the optimality in terms of least square error. Since

the GF and many other linear filters in image processing

generally have an odd-length filter window, the DCT-5

is consistent with these cases. As in the DCT, we can

demonstrate the same fact on the DSTs.

Consider a one-dimensional convolution with the

finite-length kernel and an input sequence fx ∈ R

(x = {0, 1, ..., N − 1}) where N is the length of the

input sequence. We first introduce C
(k)
t = cos(ωkt)

and S
(k)
t = sin(ωkt) for shorthand notation. The finite-

length kernel can be represented as

ht =
1

2
a(0) +

R∑
k=1

[
a(k)C

(k)
t + b(k)S

(k)
t

]
, (2)

where

a(k) =
ω

π

R∑
t=−R

htC
(k)
t , b(k) =

ω

π

R∑
t=−R

htS
(k)
t . (3)

Convolution between fx and ht can be described as ∗

f̃x =
R∑

t=−R

htfx+t =
R∑

k=0

[
a(k)A(k)

x + b(k)B(k)
x

]
, (4)

where A
(x)
k and B

(x)
k are the k-th short-time DCT/DST

coefficients of fx at position x, respectively, defined by

A(k)
x =

R∑
t=−R

fx+tC
(k)
t , B(k)

x =

R∑
t=−R

fx+tS
(k)
t . (5)

Some useful kernels such as the Gaussian kernel or its

derivative kernels possesses narrowband spectra, i.e.,

many a(k) and b(k) are zeros or near zeros (see Section 3

in detail). Hence, if the A
(k)
x and B

(k)
x are computable in

O(1) time complexity, this approach can be an efficient

constant-time filtering algorithm.

2. 2 2nd-order shift property of DCT/DST-5

The sliding DCT/DST is an efficient method for re-

cursively computing A
(k)
x and B

(k)
x in O(1) time com-

plexity. Many sliding transforms have been proposed

in the literature31)36) 40). They utilize recurrence rela-

tions between two or three adjacent short-time trans-

form coefficients of a target sequence, called first-order

and second-order shift properties, respectively. In gen-

eral, the second-order shift properties outperform the

first-order ones in terms of computational complexity

because the first-order ones require to compute both co-

sine and sine parts regardless of a symmetric or an asym-

metric kernel. However no second-order shift properties

of the DCT/DST-5 have not been explicitly derived yet.

Only Wu37) focused on the DCT/DST-5 but their first-

order ones. Hence, we derive second-order shift proper-

ties of the DCT/DST-5 and design an efficient filtering

algorithm with them.

Again, the second-order shift properties of the

DCT/DST-5 indicate the relationships between three

adjacent short-time coefficients A
(k)
x−1, A

(k)
x and A

(k)
x+1.

Proposition 1. A relationship between three adjacent

∗ This definition is based on correlation filtering.
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short-time transform coefficients are called a second-

order shift property. The DCT-5 and the DST-5 have

the following second-order shift properties:

A
(k)
x−1 +A

(k)
x+1 = 2C

(k)
1 A(k)

x + C
(k)
R Δc

x, (6)

B
(k)
x−1 +B

(k)
x+1 = 2C

(k)
1 B(k)

x + S
(k)
R Δs

x, (7)

where Δc
x = fx−R−1 − fx−R − fx+R + fx+R+1 and

Δs
x = −fx−R−1 − fx−R + fx+R + fx+R+1.

Proof. Expand A
(k)
x−1 and A

(k)
x+1 as

A
(k)
x−1 =

[
R∑

t=−R

fx+tC
(k)
t+1

]
− fx+RC

(k)
R+1 + fx−R−1C

(k)
−R,

A
(k)
x+1 =

[
R∑

t=−R

fx+tC
(k)
t−1

]
+ fx+R+1C

(k)
R − fx−RC

(k)
−R−1.

Since C
(k)
R = C

(k)
−R = C

(k)
R+1 = C

(k)
−R−1, we obtain (6).

Likewise, B
(k)
x−1 and B

(k)
x+1 are expanded as

B
(k)
x−1 =

[
R∑

t=−R

fx+tS
(k)
t+1

]
− fx+RS

(k)
R+1 + fx−R−1S

(k)
−R,

B
(k)
x+1 =

[
R∑

t=−R

fx+tS
(k)
t−1

]
+ fx+R+1S

(k)
R − fx−RS

(k)
−R−1.

Since S
(k)
R = −S(k)

−R = −S(k)
R+1 = S

(k)
−R−1, (7) holds.

Next, we design a filtering algorithm based on the slid-

ing DCT-5 with (6) and the sliding DST-5 with (7). The

first and second coefficients A
(k)
0 and A

(k)
1 are explicitly

computed from the original definition (5). In addition,

for k = 0, the following sliding transform has lower com-

putational complexity:

A
(0)
x+1 = A(0)

x + fx+R+1 − fx−R. (8)

In the second-order shift properties of them, they are

closed under cosine components for (6) or sine compo-

nents for (7), not mixed. These forms are important

for kernel approximation because most of kernels are

symmetric, which are represented by cosine or sine com-

ponents only. Thus, this sliding technique requires low-

computational complexity. Our algorithm precomputes

all the cosines/sins as look-up tables prior to filtering.

We can reduce more multiplications by utilizing the

look-up tables. In many cases of image filtering, a filter

kernel is statically convolved to a whole image. Since

a(k) and b(k) can be interpreted as constants while filter-

ing in this scenario, we can reformulate (4) as

f̃x =

R∑
k=0

[
α(k)
x + β(k)

x

]
. (9)

where α
(k)
x = a(k)A

(k)
x and β

(k)
x = b(k)B

(k)
x . The sliding

Algorithm 1 Proposed O(1) Gaussian Filter

1: � f : target sequence, σ: scale, K,R: parameters
2: function ProposedGaussianFilter(f, σ,K,R)

3: � Calculating the first and second terms
4: a(0) ← 1

2R+1

5: A(0) ← ∑R
t=−R ft

6: for k ← 1 to K do

7: a(k) ← 2
2R+1 exp(− 1

2ω
2σ2k2) � See (20).

8: α
(k)
−1 ← ∑R

t=−R{a(k) cos(ωkt)}ft
9: α

(k)
0 ← ∑R

t=−R{a(k) cos(ωkt)}ft+1

10: end for

11:

12: � Filtering via Our Sliding DCT-5
13: f̃0 ← a(0)A(0) +

∑K
k=1 α

(k)
−1

14: A(0) ← A(0) + (fR+1 − f−R)

15: for x ← 1 to N − 1 do

16: � Calculating the filter output for position x
17: f̃x ← a(0)A(0) +

∑K
k=1 α

(k)
0

18: � Updating short-time DCT coefficients for the next
19: A(0) ← A(0) + (fx+R+1 − fx−R)

20: Δc ← fx−R−1 − fx−R − fx+R + fx+R+1

21: for k ← 1 to K do

22: α
(k)
+1 ← {2 cos(ωk)}α(k)

0 − α
(k)
−1 + {a(k) cos(ωkR)}Δc

23: α
(k)
−1 ← α

(k)
0 , α

(k)
0 ← α

(k)
+1

24: end for

25: end for

26: end function

transforms (6) and (7) are also replaced to

α
(k)
x−1 + α

(k)
x+1 =

{
2C

(k)
1

}
α(k)
x +

{
a(k)C

(k)
R

}
Δc

x, (10)

β
(k)
x−1 + β

(k)
x+1 =

{
2C

(k)
1

}
β(k)
x +

{
b(k)S

(k)
R

}
Δs

x, (11)

where {·} indicates the stored values in the look-up ta-

bles. Through this formulation, the 4K multiplications

contained in (4) are moved to (10) and (11) as the look-

up tables. Thus, our algorithm processes a cosine/sin

component by two multiplications per pixel.

2. 3 Algorithm Procedure and Analysis

Algorithm 1 shows a general procedure of our algo-

rithm for the GF where {·} denotes precomputed values

stored in look-up tables. The computational complex-

ity is quantified by counting the number of arithmetic

operations: multiplication/division (Mul/Div) and ad-

dition/subtraction (Add/Sub). We target the main fil-

tering routine only (see line 15–25) because the precom-

puting routine has a negligible complexity as compared

with the the main one. Our algorithm requires 2K + 1

Muls and 3K + 5 Adds/Subs for each element. Specif-

ically, line 17 has 1 Mul and K Adds, line 19 has 2

Adds/Subs, line 20 has 3 Adds/Subs, and line 22 has

2K Muls and 2K Adds/Subs. Incidentally, there exist

two effective techniques for an efficient implementation:

loop unrolling for small-sized loops and ring buffers for

updating short-time DCT/DST coefficients. Unrolling

loops with respect to k such as line 21–24 eliminates loop
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Table 1 The number of arithmetic operations per ele-

ment in one-dimensional filtering.

Category Method Mul/Div∗ Add/Sub∗

Convolution R + 1 2R + 1

Recurs. Deriche18) 4M 4M − 2

Recurs. Farneback and Westin21) 4M 4M − 2

Recurs. Young and van Vliet19) 10 6

Recurs. van Vliet et al.20) 2M 2M + 2

DCT-1 CII27) 4K 6K + 2

DCT-5 Ours 2K + 1 3K + 5

∗In general, R = �3σ�, M = 3 and K = 2.

counting routine and condition judgement. Ring buffers

with the length of two eliminate the cyclic substitutions

in line 23. Both of the techniques surely reduce the

actual running time without a loss of accuracy.

Table 1 lists the number of the arithmetic opera-

tions of various algorithms for the GF: convolution

(R = �3σ� is commonly-used), recursive Gaussian fil-

ters18) 21) (M = 3 in general), and DCT-based algo-

rithms including the CII27) (K = 3) and our algorithm

(K = 2, as discussed later). Under the general parame-

ter values, our algorithm achieves the fewest Muls/Divs

in the constant-time Gaussian filters followed by the re-

cursive Gaussian filter proposed by van Vliet et al.20) In

two-dimensional filtering, our algorithm requires only 14

Muls per pixel; whereas van Vliet’s algorithm requires

16 Muls per pixel, regardless of σ. In comparison with

the CII, our algorithm reduces the number of arithmetic

operations nearly by 50%. As another advantage of our

algorithm, it enables us to perform filtering in one-pass

process per dimension, which contributes to reduce the

number of memory accesses. Any recursive Gaussian fil-

ter has a two-pass processing caused by its two feedback

systems and the CII also has an extra process to con-

struct integral images in advance. Thus, our algorithm

clearly outperforms the state-of-the-art algorithms in

terms of computational complexity.

3. Dual-domain Error Minimization

This section describes how to find an optimal param-

eter for our algorithm, called dual-domain error mini-

mization. As useful examples, we specify cases of Gaus-

sian kernel and Gaussian derivative kernels here.

3. 1 Spatial/Frequency truncation errors

Our algorithm requires two parameters: filter win-

dow radius R and the number of significant frequency

components K. The former involves a truncation in

spatial domain and the latter involves a truncation in

(short-time) frequency domain. Since both truncations

cause approximate error of kernels, we should deter-

mine them adequately. In general, convolution requires

R only and it is common to calculate it from σ, e.g.,

R = �3σ�, which supports most area of any Gaussian

kernel. The CII27) carefully sets K in terms of com-

putational complexity but fixes R = �πσ�. However,

this R-fixed parameter determination has room for im-

provement in approximate accuracy. This is a major

motivation of dual-domain error minimization.

Consider an approximate kernel truncated at K-th

components in frequency domain. In order to facilitate

mathematical analysis, (2) is redefined as t ∈ R by

ĥ(K,R, t) =
1

2
a(0) +

K∑
k=1

[
a(k)C

(k)
t + b(k)S

(k)
t

]
. (12)

The spatial truncation operator is also given by

TR [h(t)] =

⎧⎨
⎩h(t) if |t| <= R+ 1

2

0 otherwise
.

Note that the period length after TR [·] is 2R + 1 and

still ω = 2π
2R+1 . We quantify the approximate error as

E(K,R) =

∫∞
−∞

{
h(t)−TR[ĥ(K,R, t)]

}2

dt∫∞
−∞ h2(t)dt

, (13)

which is interpreted as the relative error energy. More

importantly, the approximate error consists of spatial

truncation error and frequency truncation error. By

decomposing the integral range of the numerator into

[−(R+ 1
2 ), R+ 1

2 ] and the other, we obtain

Es(R) =

∫ −(R+ 1
2 )

−∞ h2(t)dt+
∫∞
R+ 1

2
h2(t)dt∫∞

−∞ h2(t)dt
, (14)

Ef (K,R) =

∫ R+ 1
2

−(R+ 1
2 )

{
h(t)− ĥ(K,R, t)

}2

dt∫∞
−∞ h2(t)dt

, (15)

Using the Parseval equation, (15) can be rewritten as

Ef (K,R) =

π
ω

∑∞
k=K+1

[(
a(k)

)2
+

(
b(k)

)2]
∫∞
−∞ h2(t)dt

, (16)

This representation clearly shows the role of frequency

truncation. We observe that, if K is given, there is a

tradeoff between Es(R) and Ef (K,R) because larger R

causes smaller Es(R) but larger Ef (K,R). This implies

that the optimal R corresponding to the given K exists,

which is found via the error minimization problem

argmin
R∈N

Es(R) + Ef (K,R), subject to a given K.

After determining a desired K, e.g., from acceptable

computational complexity, we can solve this problem by

full search because R ∈ N is less than the half size of
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an image. However, it seems time-consuming to naively

compute Es(R) and Ef (K,R) for each iteration.

3. 2 Analysis on truncation errors

In order to clarify the properties of Es(R) and

Ef (K,R) and simplify them, we analyse the cases of

the Gaussian kernel and the Gaussian derivative ker-

nels. Note that we use dot accents such as ġ and g̈ for

notational distinctions between them.

Definition 2. Original, first-derivative, and second-

derivative Gaussian kernels, respectively, are defined by

g(t) =
1√
2πσ

e−
t2

2σ2 , (17)

ġ(t) =
d

dt
g(t) = − t√

2πσ3
e−

t2

2σ2 , (18)

g̈(t) =
d2

dt2
g(t) =

t2 − σ2

√
2πσ5

e−
t2

2σ2 , (19)

where σ ∈ R+ is the scale parameter.

Lemma 3. The transform coefficients of g(t), ġ(t), and

g̈(t), respectively, are approximated by

a(k) ≈ ω

π
e−

1
2ω

2σ2k2

, b(k) = 0, (20)

ḃ(k) ≈ −ω2

π
ke−

1
2ω

2σ2k2

, ȧ(k) = 0, (21)

ä(k) ≈ ω3

π
k2e−

1
2ω

2σ2k2

, b̈(k) = 0. (22)

Proof. Derive a(k) and b(k) first. By substituting (17)

for (3) and using the Gaussian integral, we obtain

(2R+ 1)a(k) =
1√
2πσ

R∑
t=−R

e−
t2

2σ2 −iωkt ≈ e−
1
2σ

2ω2k2

,

where

R∑
t=−R

e−
t2

2σ2 −iωkt = e−
1
2σ

2ω2k2
R∑

t=−R

e−
1

2σ2 (t+iσ2ωk)
2

≈e− 1
2σ

2ω2k2

∫ ∞

−∞
e−

t2

2σ2 dt =
√
2πσe−

1
2σ

2ω2k2

.

In the derivative cases, from differentiating (12) with

respect to t, we obtain ȧk = ωkbk and ḃk = −ωkak;
likewise, äk = ωkḃk and b̈k = −ωkȧk hold.

Lemma 3 reveals that the three kernels have many zero

(from shape symmetry) or almost-zero (from exponen-

tial attenuation) coefficients. Hence, we can sufficiently

approximate them using small K.

Next, their truncation errors are clarified as follows:

Proposition 4. If we assume that 1 <= σ, then the spa-

tial/frequency truncation errors of g(t), ġ(t), and g̈(t)

are simplified or approximated as follows:

i) Gaussian kernel:

Es(R) = erfc (φ) , Ef (K,R) ≈ erfc (ψ) , (23)

ii) First-derivative Gaussian kernel:

Ės(R) = erfc (φ) +
2√
π
φe−φ2

, (24)

Ėf (K,R) ≈ erfc (ψ) +
2√
π
ψe−ψ2

, (25)

iii) Second-derivative Gaussian kernel:

Ës(R) = erfc (φ) +
2√
π
φe−φ2

(
2

3
φ2 − 1

3

)
, (26)

Ëf (K,R) ≈ erfc (ψ) +
2√
π
ψe−ψ2

(
2

3
ψ2 + 1

)
, (27)

where φ = 2R+1
2σ , ψ = πσ 2K+1

2R+1 , and erfc(·) is the com-

plementary error function.

Proof. We use the following formulae in this proof:∫ v

u

a2nx2ne−a2x2

dx =
1

2a

[
Γ

(
n+

1

2
, a2x2

)]u
v

,

where Γ(·, ·) is the incomplete Gamma function, which

has the recurrence formulae

Γ

(
1

2
, a2x2

)
=
√
π erfc (ax) ,

Γ
(
m+ 1, a2x2

)
= mΓ

(
m, a2x2

)
+ a2mx2me−a2x2

.

We first derive (23). Its normalization factor for (13) is∫ ∞

−∞
g2(t)dt =

1

2πσ2

∫ ∞

−∞
e−

t2

σ2 dt =
1

2
√
πσ

.

The spatial truncation error is simplified as

Es(R) =
2
∫∞
R+ 1

2
g2(t)dt∫∞

−∞ g2(t)dt
=

2√
πσ

∫ ∞

R+ 1
2

e−
t2

σ2 dt

=
1√
π

[
Γ

(
1

2
,
t2

σ2

)]R+ 1
2

∞
= erfc

(
2R+ 1

2σ

)
.

The frequency truncation error is approximated via con-

tinuous relaxation by

Ef (K,R) ≈
π
ω

∫ R+ 1
2

K+ 1
2

a2kdk∫∞
−∞ g2(t)dt

≈ 2ωσ√
π

∫ R+ 1
2

K+ 1
2

e−ω2σ2k2

dk

=
1√
π

[
Γ

(
1

2
, ω2σ2k2

)]K+ 1
2

R+ 1
2

≈ erfc

(
πσ

2K + 1

2R+ 1

)
,

where erfc (πσ) ≈ 0 is negligible under 1 <= σ.

The cases of the other kernels are also derived in the

same manner. For the first-derivative Gaussian kernel,

Ės(R) =
2√
π

[
Γ

(
3

2
,
t2

σ2

)]R+ 1
2

∞
,

Ėf (K,R) ≈ 2√
π

[
Γ

(
3

2
, ω2σ2k2

)]K+ 1
2

R+ 1
2

.

Likewise, the second-derivative Gaussian kernel creates
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Fig. 1 As compared with the approximation employed

in CII (R = �πσ�), the dual-domain error min-

imization (Opt. R) can significantly reduce ap-

proximate error, in particular, for smaller K.

For σ >= 4, it provides less error than a common

truncated Gaussian kernel (R = �3σ�).

Ës(R) =
4

3
√
π

[
Γ
(

5
2 ,

t2

σ2

)
−2Γ

(
3
2 ,

t2

σ2

)
+Γ

(
1
2 ,

t2

σ2

)]R+ 1
2

∞
,

Ëf (K,R) ≈ 4

3
√
π

[
Γ

(
5

2
, ω2σ2k2

)]K+ 1
2

R+ 1
2

.

Expanding all the above Γ (·, ·) by its recurrence formu-

lae, we obtain (24), (25), (26) and (27).

Evidently, each Gaussian-based kernel shows a tradeoff

between both truncation errors with respect to R, i.e.,

E(K,R) is unimodal. Thereby, in our dual-domain error

minimization, the optimal R corresponding to a desired

K can be found efficiently by the binary search.

4. Experiments and Discussion

This section validates the efficiency of our algorithm

through some experiments using natural images. The

test image is the standard image “N2” (grayscale,

2560×2048) in the ISO/JIS-SCID41). Our test envi-

ronment mounts on an Intel Core i5 2.67GHz CPU and

8GB main memory. The competitors are convolution,

van Vliet’s recursive filter20), and our algorithm. We

used cv::GaussianBlur function in OpenCV 2.4.542) for

the convolution and self-produced codes written in C++

for the others. Note that all the algorithms showed the

almost same tendencies regardless of target images since

the performance are independent of image contents.

4. 1 Effectivity of Parameter Optimization

Figure 1 plots the relationship between σ and root-

sum-square-error (RSSE) of the Gaussian kernel defined

by (2). Evidently, the dual-domain error minimization

(Opt. R) produces less approximate error than the ap-

proximation employed in the CII (R = �πσ�) , in addi-

tion to provide an even higher accuracy than a common

truncated Gaussian kernel (R = �3σ�) for σ >= 4. Hence,

our algorithm surely improves approximate accuracy,

particularly for smaller K.

Figure 2 shows the root truncation error for Gaus-

sian kernel and Gaussian derivative kernels in our algo-

rithm. For a fair comparison, we normalize the area of

each kernel to one in advance to equalize the dynamic

range of output images. If a sufficient accuracy is as-

sumed as 2.5% tolerance (gray-dashed), we set K = 2

for Gaussian kernel and K = 3 for first- and second-

derivative Gaussian kernels. These parameter values

are used in the successive experiments. Moreover, our

algorithm has a high usability because of its accuracy

control method of determining K only.

4. 2 Evaluation of accuracy

We confirm the quality of the actual filter output

by using natural images. Figure 3 plots the relation-

ship between scale σ and output accuracy (the peak

signal-to-noise ratio; PSNR [dB]). We assume that±5σ-
supported convolution outputs an exact one. In all

the filters, our algorithm shows the most stable per-

formance. It is clearly higher than the recursive filter,

which faces accuracy dropping over σ > 16. This sta-

bility of accuracy is an advantage for the scale-space

analysis and high-resolutional image filtering.

Figure 4 lists actual output images and their

100×amplified error image to facilitate visual assess-

ment. Note that they achieve almost the same PSNR.

Convolution and van Vliet’s recursive GF have errors

around edges. Our algorithm shows high-frequency er-

ror over an entire image. Evidently, this is caused by the

frequency truncation.

4. 3 Evaluation of running time

Figure 5 plots the relationship between scale σ versus

the filtering time. For any kernel, our algorithm shows

stably-high performance regardless of σ, comparable to

convolution for σ = 1 and approximately 2.5× faster

than the recursive filtering. The reason why our algo-

rithm achieved higher performance rate expected in Ta-

ble 1 as compared with van Vliet’s algorithm is memory

access cost as discussed in the preceding section. Thus,

our algorithm achieves significantly faster filtering.

5. Conclusions

This paper presented an efficient O(1) GF and its

derivative ones that provide high accuracy in low com-

putational complexity over a wide range of σ. They

utilized the spectrum sparsity of the kernels and op-

timal parameter determination via dual-domain error

minimization. In experiments of image filtering, our al-
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Fig. 2 Scale σ versus kernel truncation error If a sufficient accuracy is assumed as 2.5% tolerance

(gray-dashed), we set K = 2 for the GF and K = 3 for the first- and second-derivative GF.

Fig. 3 Scale σ versus output accuracy (PSNR) [dB] in image filtering. We assume ±5σ-supported

convolution as an exact output. Our algorithm produces a stably-high accuracy over wide range

of σ; whereas van Vliet’s recursive filter shows an accuracy degradation over 16 < σ.

Fig. 4 Visual assessment of GF algorithms. The error images are 100× amplified to facilitate visualiza-

tion. The parameters values are R = �3σ� for convolution, M = 4 for van Vliet’s recursive GF,

and K = 3 for ours to achieve almost the same PSNR.

gorithm showed superiority to the recursive Gaussian

filters in computational complexity, approximate accu-

racy, and accuracy stability. We believe that this im-

provement contributes to various modern algorithms in

many image processing applications. As future work, we

will extend this idea to more generalized filters such as

the bilateral filter2) 4).
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