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ABSTRACT

This paper presents an efficient constant-time Gaussian fil-
ter which provides a high accuracy at a low cost over a wide
range of scale o. It requires only 14 multiplications per pixel
in image filtering regardless of o, which is fewer than state-of-
the-art constant-time Gaussian filters. Main ideas of the paper
are as follows: 1) introducing a second-order shift property
of the discrete cosine transform type-5 (DCT-5) to convolve
cosines faster, and 2) suppressing error propagation caused
by the shift property. Experiments in image processing show
that the proposed algorithm is 3.7 faster than a state-of-the-
art recursive Gaussian filter and comparable to that of +30-
supported Gaussian convolution with o = 2.33. The output
accuracy is stable at around 80 [dB] all over o € [1,128].

Index Terms— Gaussian filter, discrete cosine transform,
sliding DCT, scale-space theory

1. INTRODUCTION

Gaussian filter is a fundamental tool in image processing and
computer vision. Based on the success of scale-space the-
ory [1,2], it is widely used in a variety of tasks including ob-
ject recognition [3], visual saliency [4] and edge detection [5],
and high dynamic range imaging [6]. A principal problem in
this scenarios is that the computational cost of Gaussian con-
volution proportional to scale parameter o because the tasks
require many Gaussian-filtered images over a wide range of
0. Generally, this problem has been managed by reduction
of image resolution, oversimplification of Gaussian kernel, or
hardware acceleration; however, they requires an additional
device or causes a non-negligible loss of accuracy. A solid
algorithmic solution is the use of a constant-time Gaussian
filter, which has a o-independent cost.

We summarize constant-time Gaussian filters as follows:
Iterated box filter [7, 8]: This has the simplest implemen-
tation in them. This approach is based on the central limit
theorem, which guarantees that iteratively convolving a box
kernel converges a Gaussian kernel with a certain ¢ at the
limit. The computational cost is acceptable for all o; however,
the accuracy is comparatively insufficient due to a difficulty
in discrete system that we have to control the convergence to-
ward a target ¢ by combining integer-length box kernels only.
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Recursive Gaussian filters [9—11]: This is the state-of-the-
art style in constant-time Gaussian filters. It mimics a Gaus-
sian filter as a low-order feedback system with two-pass pro-
cessing. The computational cost and accuracy are basically
sufficient and acceptable for some applications. However, as
observed in [12], the accuracy drops drastically for o > 30.
Thus, this style is unstable in accuracy for a large o.

Kernel decomposition [13—17]: This is also an effective ap-
proach to achieve constant-time filtering. It decomposes a
Gaussian kernel into a sum of basis kernels which can be
convolved at a o-independent cost by using integral image
[18,19]. Basis kernels commonly-used are splines [13], poly-
nomials [14], and cosines [15-17]. Particularly, cosine-based
kernel decomposition has recently achieved the highest accu-
racy in them at a reasonable cost over a wide range of o. We
discuss an improvement of the cosine-based algorithms.

The cosine-based algorithms are developed based on the
fact that a Gaussian kernel can be approximated by a weighted
sum of cosines since it is an even function which contains
low-frequency components only. Elboher and Werman pre-
sented Cosine Integral Image (CII) [15], which employed the
Discrete Cosine Transform type-1 (DCT-1) for kernel decom-
position and utilizes integral images for cosine convolution.
Sugimoto and Kamata [16] showed how to perform cosine
convolution without integral images, contributing to memory
access saving. After that, they eliminated the offset distor-
tion and reduced the computational cost by employing DCT-
5 [17]. A problematic point of these algorithms is that it
still requires a higher computational cost than that of state-of-
the-art recursive Gaussian filters. Although these researches
demonstrated that their practical filtering time outperform that
of recursive Gaussian filters in their experiments, it might
be environment-dependent. We therefore reveal that cosine-
based algorithms achieve a lower computational cost than the
recursive ones by utilizing a significant property of DCT-5.

The key technique to reduce the computational cost is slid-
ing DCT [20-24], which is a recursive way to compute short-
time DCT coefficients and has been studied in signal process-
ing since 1980s. Because cosine convolution performed in
the existing algorithms is equivalent to computation of short-
time DCT coefficients, it can be replaced to sliding DCT com-
pletely. A problem for applying it to Gaussian filter is that an
efficient sliding DCT-5 has not been explicitly derived yet.
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The previous researches have traditionally focused only on
DCT-1,2, 3,4 (with an even-length of period) but have less
focused on DCT-5, 6, 7, 8 (with an odd-length of period) [25]
except Wu [21], probably due to their compatibility to butter-
fly computation. Sliding DCT handles relations between two
or three adjacent short-time coefficients, called a first-order
or second-order shift properties of DCT, respectively. Gen-
erally, second-order one outperforms first-order one in com-
putational cost. Wu’s work focused only on a first-order one
only, not a second-order one. Hence, we derive a second-
order shift property of DCT-5 and then develop a lower-cost
filtering algorithm based on it.

This paper presents an efficient constant-time Gaussian fil-
ter which provides a high accuracy at a low cost over a wide
range of o. It requires only 14 multiplications per pixel in im-
age filtering regardless of o, which is fewer than state-of-the-
art constant-time Gaussian filters. Our key idea is to derive a
second-order shift property of DCT-5 to compute short-time
DCT coefficients in order to achieve a lower computational
cost than existing algorithms. Suppression of error propaga-
tion caused by the shift property is also discussed in the pa-
per to achieve stably higher accuracy. Experiments in image
filtering demonstrate two significant improvements: the filter-
ing speed of our algorithm is 3.7 x faster than state-of-the-art
recursive Gaussian filters and comparable to that of Gaussian
convolution with ¢ = 2.33. Moreover, it can stably provide
an accuracy of around 80 [dB] all over o € [1,128].

2. FAST GAUSSIAN FILTERING

This paper discusses one-dimensional Gaussian filter only be-
cause of its separability, i.e., a multi-dimensional Gaussian
kernel can be decomposed into a product of multiple one-
dimensional Gaussian kernels. Our algorithm is therefore ap-
plicable to arbitrary-dimensional data. Let o be a scale pa-
rameter and R be a truncation location (R = [307] in general).
A truncated Gaussian kernel g, (u = —R,...,+R) and its
decomposition via DCT-5 can be defined as

-y

k=0
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Ju Gy, cos (pku) ,

- 27r0
where ¢ = 5% is introduced for simplicity and G, indi-
cates the k-th DCT coefficient of g,,. An approximate G, can
be obtained from a closed-form expression,

1 ifk=0
- ' 2
ck {2 otherwise. @

Since Gy, exponentially decreases, g, can be approximated
by few low-frequency components. We therefore truncate fre-
quency components higher than K (i.e., Gy < 0if K < k).
Convolution with an input sequence f, (z =0,1,...,N—1)
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and an approximate kernel g,, can be described as

Z fmgu—ZGkF(“”, 3)

u=—R

(fxg9), = (f*3),

where F,Em) is the k-th short-time DCT coefficient of the input
sequence f, at location x, given in

R
F,iw> = Z frrucos (pku) .

u=—R

“)

Since G, is precomputable prior to filtering process, it is im-

portant to obtain F, ,iz) at an R-independent and lower cost.

2.1. Second-order shift property of DCT-5

Our algorithm computes F,gw) recursively by managing a
second-order shift property of DCT-5, which is a relationship
among three consecutive short-time coefficients. Consider

R
F]imil) = Z fz+ucu—1 + fz+R+1CR - fm—RC—R—l
u=—R
R
z+1
F/S = Z feruCurt — forRCRy1 + for-1C_R,

u=—R

where C,, = cos (¢ku) for simplicity. Since Cr = C_p =

Crar=C_p1, EY F,Emfl) can be rewritten as
F(w+1) 20, F Féxfl) + Cré™@, 5)
where §) = fuypi1 — foyr — fo-r + fo_r—1. The co-

efficients are precomputable as look-up tables. The first and
second terms F,im and F,gl) are explicitly calculated from (4).
The case of & = 0 should be treated for cost saving as

F<£+l) fmfR-

The second-order shift property (5) enables us to recursively

Fm + feyR41 — (6)

compute F,ix) at an R-independent cost.

2.2. Suppression of error propagation

Consider reducing more multiplications by utilizing look-up
tables. The recurrence relations (5) and (6) can absorb G},
contained in (3) into themselves. A concern is that naively
moving G, into them may result in propagating rounding-off
error due to their recursive ways. We understand f, to orig-
inally contain no rounding-off error. This is natural in most
real applications because many images consist of integer pix-
els. A rounding-off error would occur in multiplying f,, and
a real number such as Gy, or cos(¢k). The dominant compo-
nent of error propagation is the one having the largest weight
in all the components, i.e., ¥ = 0. Hence, we move Gy, into



Algorithm 1 Proposed constant-time Gaussian filter

: > Calculating first and second terms
R
: F(J — 21:713 fu
: for k <+ 1to K do
- +R
Zy; = 2u——rim cos(Pku)} fu

Zi = S5 {vk cos(¢ku)} fuia
end for

: > Convoluting cosine terms sligingly

s (f 2o < {Go}(Fo+ X321 Z1)
10: Fo <= Fo— f-r+ frR11

11: forz < 1to N — 1do

R R N

12: > Calculating the output value for location x

13 (F @) < {Go}(Fo + Yooy Zk)

14: > Updating short-time DCT coefficients for the next

15: Fy < Fo— foer+ ferrt1

16: 04 fo-rR-1— fo—R — fetrR + ferrt1

17: for k + 1to K do

18: ¢« {2cos(¢k)} 21, — Z + {7™® cos(pkR)}S
19: 2y 4 Ziy Ly G

20: end for

21: end for

Fig. 1. A main procedure of our algorithm.

(5) only for k # 0 in order to avoid real multiplications in (6).
Specifically, (3) can be deformed as

K
(f = g)x =Gy (Féz) + Z Z](f)> , Zl(cm) - ,}/kFISGC)7
k=1
where v, = Gy /Gy = cke*é”z“szkz. A recurrence relation

for Zlim) is deformed from (5) as
70 — 20y 28 — 7"V 4 Crys@).

This way can suppress error propagation because the recur-
rence relation for the dominant component given in (6) still
contains no real multiplications. Incidentally, if error prop-
agation is still non-negligible, the most secure solution is to
directly refresh Z ,(f> at a regular interval via (4).

2.3. Algorithm flow and its analysis

Figure 1 shows a pseudo code of our algorithm where {-} de-
notes precomputed values stored in look-up tables. We count
the number of arithmetic operations of our algorithm, target-
ing only the core filtering routine in line 11-21 because the
precomputing routines has a negligible cost as compared with
the the core one. Our algorithm, for each output, requires
2K + 1 multiplications (1 in line 13, and 2K in line 18)
and 3K + 5 additions/subtractions (K in line 13, 2 in line
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Table 1. Number of operations per element (1D filtering).

Method [ Mul/Div*  Add/Sub*
Convolution R+1 2R+1
Deriche [9] 4M 4M — 2
Farneback and Westin [11] aM 4M — 2
van Vliet ef al. [10] 2M 2M + 2
Cosine integral image [15] 4K 6K + 2
Sugimoto and Kamata [17] 4K + 2 41K +1
Ours 2K +1 3K +5

*Common parameters: R = [30], M = 4,and K = 3.

15, 3 in line 16, and 2K in line 18). We introduce two ef-
fective tips for its efficient implementation: loop unrolling
for small-sized loops and ring buffers for updating short-time
DCT coefficients. Unrolling loops with respect to k such
as line 17-20 eliminates loop counting routine and condition
check. Ring buffers with a length of two facilitate to remove
the cyclic substitutions in line 19. Both of them are simple to
implement due to a small K, surely saving the computational
cost without loss of accuracy.

Table 1 lists the number of arithmetic operations of var-
ious Gaussian filters. Under the common parameter setting
noted at the bottom of the table, our algorithm achieves the
fewest multiplications in the constant-time Gaussian filters
followed by the recursive Gaussian filter proposed by van
Vliet et al. [10]. In the case of two-dimensional filtering, they
requires 14 multiplications per pixel and 16 multiplications
per pixel, respectively. In comparison with other cosine-based
Gaussian filters, the cost is reduce by nearly half. Another
advantage of our algorithm over recursive Gaussian filters is
one-pass filtering per dimension, saving memory access and
simplifying the implementation. Existing recursive Gaussian
filters consist of a two-pass feedback system and CII requires
to construct integral images in advance, causing extra mem-
ory access. Memory access cost, as compared with arithmetic
operations, has been a more principal bottleneck for mod-
ern computers recent years. Hence, our algorithm has a low
computational cost in terms of both arithmetic operation and
MEemory access costs.

3. EXPERIMENTS AND DISCUSSION

This section examines the practical computational time, ac-
curacy, and characteristics of our algorithm as compared
with existing algorithms through experiments in image fil-
tering. The competitors are +3o-supported Gaussian con-
volution, recursive Gaussian filters by van Vliet et al. [10]
and by Farneback and Westin [11], and cosine-based algo-
rithms including CII [15], Sugimoto and Kamata [17], and
our algorithm under the common parameters as noted in Ta-
ble 1. The test environment mounts on Intel Core i5 2.67GHz
CPU and 8GB main memory. Test images are “lenna” with
512x512 pixels, “baboon” with 512x512 pixels, and “N2”
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N2 (with complicated texture)
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Fig. 2. Scale vs PSNR (lenna).

/

Convolution (79.0 dB, 78.3 dB) van Vliet et al. [10]

with 2048 x2560 pixels from the Standard Image Data-Base
(SIDBA) and the Standard Colour Image Data (ISO/JIS-
SCID) [26], converted from 24-bits RGB color to 32bit-float
grayscale with a dynamic range of [0,1]. The implementa-
tions used are OpenCV 2.4.5 [27] (cv::GaussianBlur func-
tion) for Gaussian convolution and self-produced ones for the
others where all the implementations were written in C++.

We find K to provide a sufficient accuracy. Figure 2 shows
the Peak-Signal-To-Noise Ratio (PSNR) of Gaussian convo-
lution and our algorithm (K = 1, 2, 3) where the ideal output
is assumed to be the output of +50-supported Gaussian con-
volution. Evidently, K = 3 produces an accuracy comparable
or superior to that of Gaussian convolution.

Figure 3 plots the PSNR of the competitors over a wider
range of 0. The accuracy of our algorithm is the highest in
them and stable at around 80 [dB] all over o € [1,128]. By
contrast, the accuracy of the two recursive filters drastically
declined around 30 < o, as also reported in [12]. Thus, our
algorithm can provide a more reliable quality than the others
over a wide range of scale.

Figure 4 plots the computational time of the competitors.
Our algorithm is the fastest in them, achieving about 3.7 x
faster than the recursive Gaussian filter and CII, 1.6 x faster
than Sugimoto and Kamata. The computational time is com-
parable to that of £3c-supported Gaussian convolution with
o = 2.33 (or R = 7). The results of convolution and our
algorithm mostly coincide with expectations from the num-
ber of arithmetic operations shown in Table 1; however, those
of the recursive Gaussian filters do not. This is probably at-
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Fig. 3. Scale vs PSNR (N2).
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Fig. 4. Scale vs computational time (N2).
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Fig. 5. 500x amplified error images of various Gaussian filters with o = 2.

(75.6 dB, 72.2 dB)

tributed to the practical cost caused by its two-pass filtering
per dimension, unlike one-pass filtering per dimension such
as convolution and our algorithm. Thus, our algorithm stably
provides the state-of-the-art filtering speed regardless of o.

Last, we perform visual assessment of error characteristics
of our algorithm. Figure 5 lists 500x amplified error images
for o = 2. The outputs of our algorithm obviously contain
less error than the others. Convolution and our algorithm
show substantially-difference characteristics: noise in convo-
lution occurs around edges as ripple phenomenon; noise in
our method consists of higher frequency as clearly seen in the
result of “baboon”. This is due to the high frequency trun-
cation with K. Actually, this difference is trivial for many
applications because of the 500x amplification to facilitate
visuality. Thus, our algorithm can be an alternative of +30-
supported Gaussian convolution.

4. CONCLUSIONS

This paper presented an efficient constant-time Gaussian fil-
ter with a second-order shift property of DCT-5 which outper-
forms existing algorithms over a wide range of scale in terms
of accuracy, its stability, and computational cost. Experiments
in image filtering demonstrated the superiority of utilizing a
second-order shift property of DCT-5. Our algorithm is an
algorithmic solution for multiscale image analysis to naively
overcome the cost increase problem of Gaussian convolution.
We believe that our research outcome contributes to a variety
of applications in image processing and computer vision.
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