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ABSTRACT

This paper presents an efficient constant-time Gaussian fil-
ter which provides a high accuracy at a low cost over a wide
range of scale σ. It requires only 14 multiplications per pixel
in image filtering regardless of σ, which is fewer than state-of-
the-art constant-time Gaussian filters. Main ideas of the paper
are as follows: 1) introducing a second-order shift property
of the discrete cosine transform type-5 (DCT-5) to convolve
cosines faster, and 2) suppressing error propagation caused
by the shift property. Experiments in image processing show
that the proposed algorithm is 3.7× faster than a state-of-the-
art recursive Gaussian filter and comparable to that of ±3σ-
supported Gaussian convolution with σ = 2.33. The output
accuracy is stable at around 80 [dB] all over σ ∈ [1, 128].

Index Terms— Gaussian filter, discrete cosine transform,
sliding DCT, scale-space theory

1. INTRODUCTION

Gaussian filter is a fundamental tool in image processing and
computer vision. Based on the success of scale-space the-
ory [1, 2], it is widely used in a variety of tasks including ob-
ject recognition [3], visual saliency [4] and edge detection [5],
and high dynamic range imaging [6]. A principal problem in
this scenarios is that the computational cost of Gaussian con-
volution proportional to scale parameter σ because the tasks
require many Gaussian-filtered images over a wide range of
σ. Generally, this problem has been managed by reduction
of image resolution, oversimplification of Gaussian kernel, or
hardware acceleration; however, they requires an additional
device or causes a non-negligible loss of accuracy. A solid
algorithmic solution is the use of a constant-time Gaussian
filter, which has a σ-independent cost.

We summarize constant-time Gaussian filters as follows:
Iterated box filter [7, 8]: This has the simplest implemen-
tation in them. This approach is based on the central limit
theorem, which guarantees that iteratively convolving a box
kernel converges a Gaussian kernel with a certain σ at the
limit. The computational cost is acceptable for all σ; however,
the accuracy is comparatively insufficient due to a difficulty
in discrete system that we have to control the convergence to-
ward a target σ by combining integer-length box kernels only.

Recursive Gaussian filters [9–11]: This is the state-of-the-
art style in constant-time Gaussian filters. It mimics a Gaus-
sian filter as a low-order feedback system with two-pass pro-
cessing. The computational cost and accuracy are basically
sufficient and acceptable for some applications. However, as
observed in [12], the accuracy drops drastically for σ > 30.
Thus, this style is unstable in accuracy for a large σ.
Kernel decomposition [13–17]: This is also an effective ap-
proach to achieve constant-time filtering. It decomposes a
Gaussian kernel into a sum of basis kernels which can be
convolved at a σ-independent cost by using integral image
[18,19]. Basis kernels commonly-used are splines [13], poly-
nomials [14], and cosines [15–17]. Particularly, cosine-based
kernel decomposition has recently achieved the highest accu-
racy in them at a reasonable cost over a wide range of σ. We
discuss an improvement of the cosine-based algorithms.

The cosine-based algorithms are developed based on the
fact that a Gaussian kernel can be approximated by a weighted
sum of cosines since it is an even function which contains
low-frequency components only. Elboher and Werman pre-
sented Cosine Integral Image (CII) [15], which employed the
Discrete Cosine Transform type-1 (DCT-1) for kernel decom-
position and utilizes integral images for cosine convolution.
Sugimoto and Kamata [16] showed how to perform cosine
convolution without integral images, contributing to memory
access saving. After that, they eliminated the offset distor-
tion and reduced the computational cost by employing DCT-
5 [17]. A problematic point of these algorithms is that it
still requires a higher computational cost than that of state-of-
the-art recursive Gaussian filters. Although these researches
demonstrated that their practical filtering time outperform that
of recursive Gaussian filters in their experiments, it might
be environment-dependent. We therefore reveal that cosine-
based algorithms achieve a lower computational cost than the
recursive ones by utilizing a significant property of DCT-5.

The key technique to reduce the computational cost is slid-
ing DCT [20–24], which is a recursive way to compute short-
time DCT coefficients and has been studied in signal process-
ing since 1980s. Because cosine convolution performed in
the existing algorithms is equivalent to computation of short-
time DCT coefficients, it can be replaced to sliding DCT com-
pletely. A problem for applying it to Gaussian filter is that an
efficient sliding DCT-5 has not been explicitly derived yet.
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The previous researches have traditionally focused only on
DCT-1, 2, 3, 4 (with an even-length of period) but have less
focused on DCT-5, 6, 7, 8 (with an odd-length of period) [25]
except Wu [21], probably due to their compatibility to butter-
fly computation. Sliding DCT handles relations between two
or three adjacent short-time coefficients, called a first-order
or second-order shift properties of DCT, respectively. Gen-
erally, second-order one outperforms first-order one in com-
putational cost. Wu’s work focused only on a first-order one
only, not a second-order one. Hence, we derive a second-
order shift property of DCT-5 and then develop a lower-cost
filtering algorithm based on it.

This paper presents an efficient constant-time Gaussian fil-
ter which provides a high accuracy at a low cost over a wide
range of σ. It requires only 14 multiplications per pixel in im-
age filtering regardless of σ, which is fewer than state-of-the-
art constant-time Gaussian filters. Our key idea is to derive a
second-order shift property of DCT-5 to compute short-time
DCT coefficients in order to achieve a lower computational
cost than existing algorithms. Suppression of error propaga-
tion caused by the shift property is also discussed in the pa-
per to achieve stably higher accuracy. Experiments in image
filtering demonstrate two significant improvements: the filter-
ing speed of our algorithm is 3.7× faster than state-of-the-art
recursive Gaussian filters and comparable to that of Gaussian
convolution with σ = 2.33. Moreover, it can stably provide
an accuracy of around 80 [dB] all over σ ∈ [1, 128].

2. FAST GAUSSIAN FILTERING

This paper discusses one-dimensional Gaussian filter only be-
cause of its separability, i.e., a multi-dimensional Gaussian
kernel can be decomposed into a product of multiple one-
dimensional Gaussian kernels. Our algorithm is therefore ap-
plicable to arbitrary-dimensional data. Let σ be a scale pa-
rameter and R be a truncation location (R = ⌈3σ⌉ in general).
A truncated Gaussian kernel gu (u = −R, . . . ,+R) and its
decomposition via DCT-5 can be defined as

gu =
1√
2πσ

e−
u2

2σ2 =
R∑

k=0

Gk cos (ϕku) , (1)

where ϕ = 2π
2R+1 is introduced for simplicity and Gk indi-

cates the k-th DCT coefficient of gu. An approximate Gk can
be obtained from a closed-form expression,

Gk ≃
ck

2R+ 1
e−

1
2σ

2ϕ2k2

, ck =

{
1 if k = 0,

2 otherwise.
(2)

Since Gk exponentially decreases, gu can be approximated
by few low-frequency components. We therefore truncate fre-
quency components higher than K (i.e., Gk ← 0 if K < k).
Convolution with an input sequence fx (x = 0, 1, . . . , N−1)

and an approximate kernel g̃u can be described as

(f ∗ g)x ≃ (f ∗ g̃)x =
R∑

u=−R

fx+ug̃u =
K∑

k=0

GkF
(x)
k , (3)

where F (x)
k is the k-th short-time DCT coefficient of the input

sequence fx at location x, given in

F
(x)
k =

R∑
u=−R

fx+u cos (ϕku) . (4)

Since Gk is precomputable prior to filtering process, it is im-
portant to obtain F

(x)
k at an R-independent and lower cost.

2.1. Second-order shift property of DCT-5

Our algorithm computes F
(x)
k recursively by managing a

second-order shift property of DCT-5, which is a relationship
among three consecutive short-time coefficients. Consider

F
(x−1)
k =

R∑
u=−R

fx+uCu−1 + fx+R+1CR − fx−RC−R−1

F
(x+1)
k =

R∑
u=−R

fx+uCu+1 − fx+RCR+1 + fx−R−1C−R,

where Cu = cos (ϕku) for simplicity. Since CR = C−R =

CR+1 = C−R−1, F (x+1)
k + F

(x−1)
k can be rewritten as

F
(x+1)
k = 2C1F

(x)
k − F

(x−1)
k + CRδ

(x), (5)

where δ(x) = fx+R+1 − fx+R − fx−R + fx−R−1. The co-
efficients are precomputable as look-up tables. The first and
second terms F (0)

k and F
(1)
k are explicitly calculated from (4).

The case of k = 0 should be treated for cost saving as

F
(x+1)
0 = F

(x)
0 + fx+R+1 − fx−R. (6)

The second-order shift property (5) enables us to recursively
compute F

(x)
k at an R-independent cost.

2.2. Suppression of error propagation

Consider reducing more multiplications by utilizing look-up
tables. The recurrence relations (5) and (6) can absorb Gk

contained in (3) into themselves. A concern is that naively
moving Gk into them may result in propagating rounding-off
error due to their recursive ways. We understand fx to orig-
inally contain no rounding-off error. This is natural in most
real applications because many images consist of integer pix-
els. A rounding-off error would occur in multiplying fx and
a real number such as Gk or cos(ϕk). The dominant compo-
nent of error propagation is the one having the largest weight
in all the components, i.e., k = 0. Hence, we move Gk into
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Algorithm 1 Proposed constant-time Gaussian filter

1: ▷ Calculating first and second terms
2: F0 ←

∑+R
u=−R fu

3: for k ← 1 to K do
4: Z−

k ←
∑+R

u=−R{γk cos(ϕku)}fu
5: Zk ←

∑+R
u=−R{γk cos(ϕku)}fu+1

6: end for
7:

8: ▷ Convoluting cosine terms slidingly
9: (f ∗ g̃)0 ← {G0}(F0 +

∑K
k=1 Z

−
k )

10: F0 ← F0 − f−R + fR+1

11: for x← 1 to N − 1 do
12: ▷ Calculating the output value for location x

13: (f ∗ g̃)x ← {G0}(F0 +
∑K

k=1 Zk)
14: ▷ Updating short-time DCT coefficients for the next
15: F0 ← F0 − fx−R + fx+R+1

16: δ ← fx−R−1 − fx−R − fx+R + fx+R+1

17: for k ← 1 to K do
18: ζ ← {2 cos(ϕk)}Zk − Z−

k + {γ(k) cos(ϕkR)}δ
19: Z−

k ← Zk, Zk ← ζ
20: end for
21: end for

Fig. 1. A main procedure of our algorithm.

(5) only for k ̸= 0 in order to avoid real multiplications in (6).
Specifically, (3) can be deformed as

(f ∗ g̃)x = G0

(
F

(x)
0 +

K∑
k=1

Z
(x)
k

)
, Z

(x)
k = γkF

(x)
k ,

where γk = Gk/G0 = cke
− 1

2σ
2ϕ2k2

. A recurrence relation
for Z(x)

k is deformed from (5) as

Z
(x+1)
k = 2C1Z

(x)
k − Z

(x−1)
k + CRγkδ

(x).

This way can suppress error propagation because the recur-
rence relation for the dominant component given in (6) still
contains no real multiplications. Incidentally, if error prop-
agation is still non-negligible, the most secure solution is to
directly refresh Z

(x)
k at a regular interval via (4).

2.3. Algorithm flow and its analysis

Figure 1 shows a pseudo code of our algorithm where {·} de-
notes precomputed values stored in look-up tables. We count
the number of arithmetic operations of our algorithm, target-
ing only the core filtering routine in line 11–21 because the
precomputing routines has a negligible cost as compared with
the the core one. Our algorithm, for each output, requires
2K + 1 multiplications (1 in line 13, and 2K in line 18)
and 3K + 5 additions/subtractions (K in line 13, 2 in line

Table 1. Number of operations per element (1D filtering).
Method Mul/Div∗ Add/Sub∗

Convolution R+ 1 2R+ 1
Deriche [9] 4M 4M − 2
Farneback and Westin [11] 4M 4M − 2
van Vliet et al. [10] 2M 2M + 2
Cosine integral image [15] 4K 6K + 2
Sugimoto and Kamata [17] 4K + 2 4K + 1
Ours 2K + 1 3K + 5

∗Common parameters: R = ⌈3σ⌉, M = 4, and K = 3.

15, 3 in line 16, and 2K in line 18). We introduce two ef-
fective tips for its efficient implementation: loop unrolling
for small-sized loops and ring buffers for updating short-time
DCT coefficients. Unrolling loops with respect to k such
as line 17–20 eliminates loop counting routine and condition
check. Ring buffers with a length of two facilitate to remove
the cyclic substitutions in line 19. Both of them are simple to
implement due to a small K, surely saving the computational
cost without loss of accuracy.

Table 1 lists the number of arithmetic operations of var-
ious Gaussian filters. Under the common parameter setting
noted at the bottom of the table, our algorithm achieves the
fewest multiplications in the constant-time Gaussian filters
followed by the recursive Gaussian filter proposed by van
Vliet et al. [10]. In the case of two-dimensional filtering, they
requires 14 multiplications per pixel and 16 multiplications
per pixel, respectively. In comparison with other cosine-based
Gaussian filters, the cost is reduce by nearly half. Another
advantage of our algorithm over recursive Gaussian filters is
one-pass filtering per dimension, saving memory access and
simplifying the implementation. Existing recursive Gaussian
filters consist of a two-pass feedback system and CII requires
to construct integral images in advance, causing extra mem-
ory access. Memory access cost, as compared with arithmetic
operations, has been a more principal bottleneck for mod-
ern computers recent years. Hence, our algorithm has a low
computational cost in terms of both arithmetic operation and
memory access costs.

3. EXPERIMENTS AND DISCUSSION

This section examines the practical computational time, ac-
curacy, and characteristics of our algorithm as compared
with existing algorithms through experiments in image fil-
tering. The competitors are ±3σ-supported Gaussian con-
volution, recursive Gaussian filters by van Vliet et al. [10]
and by Farneback and Westin [11], and cosine-based algo-
rithms including CII [15], Sugimoto and Kamata [17], and
our algorithm under the common parameters as noted in Ta-
ble 1. The test environment mounts on Intel Core i5 2.67GHz
CPU and 8GB main memory. Test images are “lenna” with
512×512 pixels, “baboon” with 512×512 pixels, and “N2”
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Fig. 5. 500× amplified error images of various Gaussian filters with σ = 2.

with 2048×2560 pixels from the Standard Image Data-Base
(SIDBA) and the Standard Colour Image Data (ISO/JIS-
SCID) [26], converted from 24-bits RGB color to 32bit-float
grayscale with a dynamic range of [0, 1]. The implementa-
tions used are OpenCV 2.4.5 [27] (cv::GaussianBlur func-
tion) for Gaussian convolution and self-produced ones for the
others where all the implementations were written in C++.

We find K to provide a sufficient accuracy. Figure 2 shows
the Peak-Signal-To-Noise Ratio (PSNR) of Gaussian convo-
lution and our algorithm (K = 1, 2, 3) where the ideal output
is assumed to be the output of ±5σ-supported Gaussian con-
volution. Evidently, K = 3 produces an accuracy comparable
or superior to that of Gaussian convolution.

Figure 3 plots the PSNR of the competitors over a wider
range of σ. The accuracy of our algorithm is the highest in
them and stable at around 80 [dB] all over σ ∈ [1, 128]. By
contrast, the accuracy of the two recursive filters drastically
declined around 30 < σ, as also reported in [12]. Thus, our
algorithm can provide a more reliable quality than the others
over a wide range of scale.

Figure 4 plots the computational time of the competitors.
Our algorithm is the fastest in them, achieving about 3.7×
faster than the recursive Gaussian filter and CII, 1.6× faster
than Sugimoto and Kamata. The computational time is com-
parable to that of ±3σ-supported Gaussian convolution with
σ = 2.33 (or R = 7). The results of convolution and our
algorithm mostly coincide with expectations from the num-
ber of arithmetic operations shown in Table 1; however, those
of the recursive Gaussian filters do not. This is probably at-

tributed to the practical cost caused by its two-pass filtering
per dimension, unlike one-pass filtering per dimension such
as convolution and our algorithm. Thus, our algorithm stably
provides the state-of-the-art filtering speed regardless of σ.

Last, we perform visual assessment of error characteristics
of our algorithm. Figure 5 lists 500× amplified error images
for σ = 2. The outputs of our algorithm obviously contain
less error than the others. Convolution and our algorithm
show substantially-difference characteristics: noise in convo-
lution occurs around edges as ripple phenomenon; noise in
our method consists of higher frequency as clearly seen in the
result of “baboon”. This is due to the high frequency trun-
cation with K. Actually, this difference is trivial for many
applications because of the 500× amplification to facilitate
visuality. Thus, our algorithm can be an alternative of ±3σ-
supported Gaussian convolution.

4. CONCLUSIONS

This paper presented an efficient constant-time Gaussian fil-
ter with a second-order shift property of DCT-5 which outper-
forms existing algorithms over a wide range of scale in terms
of accuracy, its stability, and computational cost. Experiments
in image filtering demonstrated the superiority of utilizing a
second-order shift property of DCT-5. Our algorithm is an
algorithmic solution for multiscale image analysis to naively
overcome the cost increase problem of Gaussian convolution.
We believe that our research outcome contributes to a variety
of applications in image processing and computer vision.
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