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Abstract—This paper presents a simple and efficient method
to convolve an image with a Gaussian kernel. The computation
is performed in a constant number of operations per pixel
using running sums along the image rows and columns. We
investigate the error function used for kernel approximation
and its relation to the properties of the input signal. Based on
natural image statistics we propose a quadratic form kernel
error function so that the SSD error of the output image is
minimized. We apply the proposed approach to approximate
the Gaussian kernel by linear combination of constant func-
tions. This results in a very efficient Gaussian filtering method.
Our experiments show that the proposed technique is faster
than state of the art methods while preserving similar accuracy.

Keywords-Non uniform filtering; Gaussian kernel; integral
images; natural image statistics.

I. INTRODUCTION

Image filtering is an ubiquitous image processing tool,
which requires fast and efficient computation. When the ker-
nel size increases, direct computation of the kernel response
requires more operations and the process becomes slow.

Various methods have been suggested for fast convolution
with specific kernels in linear time (see related work in
Section II). An important kernel is the Gaussian, which is
used in many applications.

In this paper we present an efficient filtering algorithm for
separable non uniform kernels and apply it for very fast and
accurate Gaussian filtering. Our method is based on one di-
mensional running sums (integral images) along single rows
and columns of the image. The proposed algorithm is very
simple and can be written in a few lines of code. Complexity
analysis, as well as experimental results show that it is faster
than state of the art methods for Gaussian convolution while
preserving similar approximation accuracy.

An additional contribution of this paper is an analysis
of the relation between the kernel approximation and the
approximation of the final output, the filtered image. Usually,
the approximation quality is measured in terms of the dif-
ference between the kernel and its approximation. However,
minimizing the kernel error does not necessarily minimize
the error on the resulting image. To minimize this error,
natural image statistics should be considered.

In Section IV we investigate the kernel approximation
error function. Based on natural image statistics we find a

quadratic form kernel error measurement which minimizes
the l2 error on the output pixel values.

The next section reviews related methods for fast non
uniform image filtering. Section III presents the filtering al-
gorithm and discusses its computational aspects. Section IV
discusses the relation between kernel approximation and
natural image statistics. Section V presents our experimental
results. We conclude in Section VI.

II. RELATED WORK

In the following we review the main approaches to accel-
erate image filtering. We describe in more detail the integral
image based approach on which the current work is based.

General and Multiscale Approaches. Convolving an
image of N pixels with an arbitrary kernel of size K can be
computed directly in O(NK) operations, or using the Fast
Fourier Transform in O(N logK) operations [1].

A more efficient approach is the linear time multiscale
computation using image pyramids [2], [3]. The coarser
image levels are filtered with small kernels and the results
are interpolated into the finer levels. This approximates the
convolution of the image with a large Gaussian kernel.

Recursive Filtering. The recursive method is a very
efficient filtering scheme for one dimensional (or separable)
kernels. The infinite impulse response (IIR) of the desired
kernel is expressed as a ratio between two polynomials in Z
space [4]. Then the convolution with a given signal is com-
puted by difference equations. Recursive algorithms were
proposed for approximate filtering with Gaussian kernels [5],
[6], [7], [8], [9], [10], anisotropic Gaussians [11] and Gabor
kernels [12].

The methods of Deriche [5], [6], [7] and Young and
van Vliet [8], [9] are the current state of the art for fast
approximate Gaussian filtering. Both methods perform two
passes in opposite directions, in order to consider the kernel
response both of the forward and backward neighbors. The
method of Young and van Vliet’s requires less arithmetic
operations per pixel. However, unlike Deriche’s method the
two passes cannot be parallelized.

Tan et al. [13] evaluated the performance of both methods
for small standard deviations using normalized RMS error.
While Deriche’s impulse response is more accurate, Young



and van Vliet performed slightly better on a random noise
image. No natural images were examined. Section V pro-
vides further evaluation of these methods.

Integral Image Based Methods. Incremental methods
such as box filtering [14] and summed area tables, known
also as integral images [15], [16], cumulate the sum of pixel
values along the image rows and columns. In this way the
sum of a rectangular region can be computed using O(1)
operations independent of its size. This makes it possible to
convolve an image very fast with uniform kernels.

Heckbert [17] generalized integral images for polynomial
kernels of degree d using d repeated integrations. Derpanis et
al. [18] applied this scheme for a polynomial approximation
of the Gaussian kernel. Werman [19] introduced another
generalization for kernels which satisfy a linear homoge-
neous equation (LHE). This scheme requires d repeated
integrations, where d is the LHE order.

Hussein et al. [20] proposed Kernel Integral Images (KII)
for non uniform filtering. The required kernel is expressed
as a linear combination of simple functions. The convolution
with each such functions is computed separately using
integral images. To demonstrate their approach, the authors
approximated the Gaussian kernel by a linear combination of
polynomial functions based on the Euler expansion. Similar
filtering schemes were suggested by Marimon [21] who
used a combination of linear functions to form pyramid
shaped kernels and by Elboher and Werman [22] who used a
combination of cosine functions to approximate the Gaussian
and Gabor kernels and the bilateral filter [23].

Stacked Integral Images. The most relevant method to
this work is the Stacked Integral Images (SII) proposed by
Bhatia et al. [24]. The authors approximate non uniform
kernels by a ’stack’ of box filters, i.e. constant 2D rectangles,
which are all computed from a single integral image. The
simplicity of the used function and not using multiple
integral images makes the filtering very efficient.

The authors of SII demonstrated their method for Gaus-
sian smoothing. However, they approximated only specific
2D kernels, and found for each of them a local minima of
a non-convex optimization problem. Although the resulting
approximations can be rescaled, they are not very accurate
(see Section V). Moreover, the SII framework does not
exploit the separability of the Gaussian kernel.

As shown in this paper, utilizing the separability property
we find an optimal kernel approximation which can be
scaled to any standard deviation. As shown in Figure 2,
this approximation is richer and more accurate. Actually,
separable filtering of the row and the columns by k one
dimensional constants is equivalent to filtering by 2k − 1
two dimensional boxes. The separability property can also
be used for an efficient computation both in time and space,
as described in Section III.

Figure 1. Approximation of the 1D Gaussian kernel on [−π, π] by k =
4 piecewise constant functions. The dashed lines show the equivalence
between 4 constant ’slices’ and 7 constant ’segments’ (Equation 4).

(a) Gaussian kernel. (b) SII [24] approximation.

(c) Proposed approximation (4 con-
stants).

(d) Proposed approximation (5 con-
stants).

Figure 2. Comparison of (a) exact Gaussian kernel, (b) Stacked Integral
Images [24] with 5 2D boxes, and the proposed method with 4 constants
(c) and 5 constants (d). Our proposed approximation is richer and more
accurate since it utilizes the Gaussian separability. Instead of using 2D
boxes, we use 1D segments to filter the rows and then the columns.

III. ALGORITHM

A. Piecewise Constant Kernel Decomposition

Consider the convolution f ∗ K of a function f with a
kernel K. For simplicity we first discuss the case in which f
and K are one dimensional. In the following (Section III-D)
we generalize the discussion to higher dimensions.

Suppose that the support of the kernel K is r, i.e. that



K is zero outside of [0, r]. Assume also that we are given a
partition P = (p0, p1, ...pk), in which 0 ≤ p0 < p1 < p2 ...
< pk−1 < pk ≤ r. Thus, the kernel K can be approximated
by a linear combination of k simple functions Ki, i = 1...k:

Ki(t) =

{
ci if pi−1 ≤ t < pi
0 otherwise (1)

Using the above approximation

f ∗K ≈
k∑
i=1

f ∗Ki (2)

which can be computed very efficiently, as described in
Section III-C.

B. Symmetric Kernels

Consider the case in which K is a symmetric kernel on
[−r, r]. The approximation can be limited to the range [0, r].
Each constant ci can be used both in the negative interval
[−pi,−pi−1] and in the positive one [pi−1, pi], however, this
requires 2k constant function. Actually, the same approxi-
mation can be computed using ’weighted slices’:

Si(t) =

{
wi if −pi < t < pi
0 otherwise (3)

where wi = ci − ci−1. Now the kernel K is approximated
by sum of k constant functions which are non zero in the
overlapping intervals [−pi, pi], with weights wi = ci−ci−1.
The approximation of K remains the same:

k∑
i=1

Si(t) =
∑

i:−pi<t<pi

wi =
∑

i:−pi<t<pi

(ci − ci−1)

=
∑

i:pi−1≤|t|<pi

ci =

k∑
i=1

Ki(t)

(4)
This equality is illustrated in Figure 1.

C. 1D Filtering Algorithm

In the following we describe the algorithm for the case
of a symmetric kernel K (Section III-B).

Given a 1D discrete function f(x) and k piecewise
constant functions Si, we compute the approximated con-
volution (Equation 2) as follows:

1) Compute the cumulative sum of f(x),

I(x) =

x∑
x′=0

f(x′) (5)

2) Compute the convolution result for each pixel x,
k∑
i=1

wi(I(x+ pi)− I(x− pi − 1)) (6)

Method Additions Multiplications
Direct h+ w − 2 h+ w
FFT O(log(hw)) O(log(hw))

KII [20] 53 18
CII [22] 12k − 8 8k − 8
SII [24] 4k + 1 k

Deriche [7] 8k − 2 8k
Young and 4k 4k + 4

van Vliet [8]
Proposed method 4k 2k

Table I
ARITHMETIC OPERATIONS PER IMAGE PIXEL (SECTION III-D).

The total cost of steps 1 and 2 is 2k additions and k
multiplications per image pixel. In the 1D case memory
access is not an issue, as all the elements are usually in
the cache.

D. Higher Dimensions and More Computational Aspects

We now describe the case of convolving a 2D image
f(x, y) with a separable 2D kernel K. A kernel K is
separable if it can be expressed as a convolution of 1D filters
Kx ∗KT

y . The convolution f ∗K can be computed by first
convolving the image rows with Kx and then the columns
of the intermediate result by Ky . Hence, filtering an image
with a separable 2D kernel only doubles the computational
cost of the 1D case.

The space complexity is also very low. Since the convolu-
tion of Kx with each row (and also Ky with each column)
is independent, filtering an image of size n × m requires
only O(max(n,m)) additional space over the input and the
output images for storing the cumulative sum of a single
row or column.

Similarly to the 2D case, the filtering scheme can be
extended to d-dimensional separable kernels using 2dk addi-
tions and dk multiplications per single pixel. The additional
required space is O(maxi(ni)), where ni (i = 1...d) are the
sizes of the signal dimensions.

Table I counts the required operations per image pixel
for 2D image filtering by a h×w separable kernel. The
parameter k denotes the number of terms (constants, 2D
boxes etc.) depending on the specific method. Notice that
experimentally our proposed method with 3 constants is
more accurate than SII [24] with 5 boxes and has an
accuracy similar to the recursive methods with 3 coefficients
(Section V, Figure 3(b)). This means that our proposed
method requires less operations than Deriche [7] and all the
integral image based methods, and a comparable number of
operations to Young and van Vliet [8].

The proposed method is also convenient for parallel
computation. The summation step (Equation 5) can be
parallelized as described in Section 4.3 of [25], while the
next step (Equation 6) computes the response of each pixel
independently of its neighbors. On the other hand, the



recursive methods can be parallelized only partially – e.g. by
filtering different rows independently. However, within each
row (or column) all the computations are strongly dependent.

Notice also that Equation 6 can be computed for a
small percentage of the image pixels. This can accelerate
applications in which the kernel response is computed for
sampled windows such as image downscaling. The recursive
methods do not have this advantage, since they compute
the kernel response of each pixel using the responses of its
neighbors.

IV. KERNEL APPROXIMATION

The approximation of a one dimensional kernel K(t) by
k constant functions is determined by the partition P and
the constants ci. Finding the best parameters is done by
minimizing an approximation error function on the desired
kernel. Indeed, our real purpose is to minimize the error
on the output image, which is not necessarily equivalent.
Section IV-A relates the kernel approximation error and the
output image error using natural image statistics. We define
a quadratic form error function for the kernel approximation,
so that the output image l2 error is minimized. This error
function is used in Section IV-B to approximate the Gaussian
kernel.

A. Minimal Output l2 Error

We denote the input signal by x, the output signal by y,
and the kernel weights by w. The approximated output and
kernel weights are denoted by ŷ and ŵ respectively. The
upper case letter X denotes the Fourier transforms of the
input x.

The squared l2 error of the final result is given by

E2 =
∑
i

(yi − ŷi)2 (7)

Since yi =
∑
j wjxi+j , E2 can be expressed in terms of the

input signal x and the kernels w, ŵ:

E2 =
∑
i

(∑
j

wjxi+j −
∑
j

ŵjxi+j

)2

=
∑
i,j,k

(wj − ŵj)(wk − ŵk)xi+jxi+k

=
∑
j,k

(
(wj − ŵj)(wk − ŵk)

∑
i

xi+jxi+k

)
(8)

The only term which involves the input signal x is the inner
sum, which we denote as Ajk =

∑
i xi+jxi+k.

Note that Ajk is the the autocorrelation of x at location
j−k. The error can be therefore expressed as

E2 = (w − ŵ)TA(w − ŵ) (9)

where A’s entries are given by the autocorrelation of the
signal x.

In order to make E2 independent of the values of a
specific x, we make use of a fundamental property of natural
images introduced by Field [26] the Fourier spectrum of a
natural image in each frequency u is proportional to 1

u ,

|Xu| ∝
1

u
(10)

Applying the Convolution Theorem, the autocorrelation of
x is

|Xu|2 ∝
1

u2
(11)

Hence, Ajk should be proportional to Φ, the inverse Fourier
transform of 1

u2 .
Of course, the definition of Φ is problematic since 1

u2 is
not defined for u = 0. Completing the missing value by an
arbitrary number affects all Φ values. However, additional
information is available which helps to complete the missing
value.

Assuming that the values of x are uniformly distributed in
[0, 1], we find that Φ0 (which equals to Ajj , the correlation
of a pixel with itself) is proportional to

∫ 1

0
x2dx = 1

3 .
In addition, assuming that distant pixels are uncorrelated,
the boundary values Φ

r
,Φ−r

are proportional to µ2
x = 1

4 .
This means that the ratio Φ

0

Φr
should be 4

3 . Determining the
missing zero value in the Fourier domain as 16.5 results in
such a function Φ.

As shown by our experiments (Section V, Figure 3(b)),
approximating the Gaussian kernel using the proposed
quadratic form (Equation 9) where Ajk = Φj−k results in
a very low l2 error (or high PSNR) on the output image.
Modifying Φ values slightly decreases the accuracy.

B. Gaussian Approximation

The Gaussian kernel is zero mean and its only parameter
is standard deviation σ. Actually, all the Gaussian kernels
are normalized and scaled versions of the standard kernel
exp( t

2

2 ). Therefore the approximation need to be computed
only once for some σ

0
. For other σ values the pre-computed

solution of N(t) is simply rescaled.
We approximate the Gaussian within the range [−πσ, πσ],

since for greater distances from the origin kernel values are
negligible. The optimization is done on the positive part
[0, πσ]. Then the kernel symmetry is used to getcompute
the weights wi as described in Section III-B.

The partition indices pi and constants ci were found by an
exhaustive search using 100 samples of the Gaussian kernel
with σ

0
= 100

π . To get the parameters for other σ values, we
scale the indices and round them:

p
(σ)
i =

⌊
σ

σ
0

· pi
⌋

(12)



(a) Speedup (b) Accuracy

Figure 3. Experimental results (Section V). (a) Time speedup is in comparison to exact filtering. Our proposed method with k = 3 is the fastest. Using
k = 5 is similar to Young and van Vliet, while Deriche and SII are slower. (b) Accuracy of the output image: the highest PSNR (minimal l2) is achieved
by our proposed quadratic form approximation with k = 4 or k = 5 which are slightly better than Deriche. Using k = 3 is still better than all other
methods including Young and van Vliet. Approximating the Gaussian kernel by l2 instead of the proposed quadratic form decreases the approximation
accuracy. Kernel Integral Images (KII) gives poor results for small σ values since integral images of polynomials are numerically unstable for high ratio
between σ and the image size.

The weights are also scaled,

w
(σ)
i =

pi

2p
(σ)
i + 1

· wi (13)

The parameters for different numbers of constants are
presented in Table II. Figure 1 shows the optimal approxi-
mation with 4 constant functions. Figure 2(c,d) present the
2D result of filtering image rows and columns using the
proposed approximation.

#constants (k) partition indices (pi) weights (ci)
k = 3 23, 46, 76 0.9495, 0.5502, 0.1618
k = 4 19, 37, 56, 82 0.9649, 0.6700, 0.3376, 0.0976
k = 5 16, 30, 44, 61, 85 0.9738, 0.7596, 0.5031,

0.2534, 0.0739

Table II
ALGORITHM PARAMETERS.

V. EXPERIMENTAL RESULTS

In order to evaluate the performance Gaussian filtering
methods we made an experiment on natural images from
different scenes. We used a collection of 20 high resolution
images (at least 1 megapixel) taken from Flickr under
creative commons. Each of the image was filtered with
several standard deviation (σ) values. Speed and accuracy
are measured in comparison to the exact Gaussian filtering
performed by the ’cvSmooth’ function of the OpenCV
library [27]. The output image error is measured by the
peak signal-to-noise ratio (PSNR). This score is defined as
−10log10(MSE), MSE is the mean squared error and the
image values are in [0, 1].

We examined our proposed method as well as the state of
the art methods of Deriche [7] and Young and van Vliet [8].

We also examined the integral image based methods of
Hussein et al. (KII, [20]), Elboher and Werman (CII, [22])
and Bhatia et al. (SII, [24]), which use a similar approach
to the proposed method (Section II). All the compared
methods were implemented by us1 except Young and van
Vliet’s filtering, for which we adopted the code of [11]. This
implementation is based on the updated design of Young and
van Vliet in [12] with corrected boundary conditions [28].

In order to examine the effect of using different error
functions for kernel approximation, we tested our proposed
method with two sets of parameters. The first set was
computed by minimizing the quadratic form error function
defined in Section IV-A. The second set was computed
by minimizing the l2 error. Since the filtering technique is
identical the speed is the same, the difference is in the output
accuracy.

Figure 3 presents the average results of our experiments.
The highest acceleration is achieved by our proposed method
with k = 3 constants (Figure 3(a)). Using k = 4 is still faster
than all other methods, while k = 5 has equivalent speedup
as Young and van Vliet’s method.

The best accuracy is achieved by our quadratic form
approximation with k = 4, 5, which is slightly better than
Deriche’s method (Figure 3(b)). Using l2 kernel approxi-
mation decreases the quality of our proposed method. This
demonstrates the importance of using an appropriate kernel
approximation. However, these results are still similar to
Young and van Vliet and better than other integral image
based methods.

1The CImg library contains an implemetation of Deriche’s method for
k = 2 coefficients. Due to caching considerations, our implementation is
about twice as fast. For the integral image based methods there is no public
implementation except CII [22] which was proposed by the authors of the
current paper.



VI. CONCLUSION

We present a very efficient and simple scheme for filtering
with separable non uniform kernels. In addition we analyze
the relation between kernel approximation, output error and
natural image statistics. Computing an appropriate Gaussian
approximation by the proposed filtering scheme is faster than
the current state of art methods, while preserving similar
accuracy.
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